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Abstract. Multi-atlas techniques are commonplace in medical image
segmentation due to their high performance and ease of implementation.
Locally weighting the contributions from the different atlases in the label
fusion process can improve the quality of the segmentation. However, how
to define these weights in a principled way in inter-modality scenarios re-
mains an open problem. Here we propose a label fusion scheme that does
not require voxel intensity consistency between the atlases and the target
image to segment. The method is based on a generative model of image
data in which each intensity in the atlases has an associated conditional
distribution of corresponding intensities in the target. The segmenta-
tion is computed using variational expectation maximization (VEM) in
a Bayesian framework. The method was evaluated with a dataset of eight
proton density weighted brain MRI scans with nine labeled structures
of interest. The results show that the algorithm outperforms majority
voting and a recently published inter-modality label fusion algorithm.

1 Introduction

Automated segmentation of brain MRI scans is a key step in most neuroimag-
ing pipelines. Manual delineation of structures of interest is time consuming and
rater dependent, making automated approaches desirable. Some of the most pop-
ular segmentation methods in the recent literature are based on the multi-atlas
paradigm, in which a set of training images with manual annotations (henceforth
“atlases”) are deformed to the image to analyze. The deformations are used to
propagate the annotations to target space, where they are finally merged into an
estimate of the segmentation; this step is known as label fusion. Multi-atlas tech-
niques overcome the main limitation of using a single atlas: the fact that a single
template can seldom cover all the anatomical variability within a population.

The simplest form of label fusion is majority voting, in which the most fre-
quent label is assigned to each voxel [1]. Better results can be achieved by locally
weighting the contribution of the atlases by their similarity to the target scan
after registration. In [2], Isgum et al. define weights by inverting the absolute dif-
ference in image intensities. A more principled framework based on a generative
model was proposed by Sabuncu et al. [3]: a smooth, discrete, latent membership

K. Mori et al. (Eds.): MICCAI 2013, Part III, LNCS 8151, pp. 576–583, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Probabilistic, Non-parametric Framework for Inter-modality Label Fusion 577

field determines from which deformed atlas the intensity and label are taken at
each spatial location; Bayesian inference is used to compute the segmentation.

These methods rely on the consistency of voxel intensities across the atlases
and the target scan. This assumption falters in inter-modality scenarios, includ-
ing MRI when the atlases and the target have been acquired with different hard-
ware or pulse sequences. This is often the case when analyzing clinical or legacy
data. Another example of application that could benefit from inter-modality la-
bel fusion is the analysis of infant brain MRI, in which the intensities are very
different than in scans from adults due to ongoing myelination.

While the image registration literature has managed inter-modality scenarios
using metrics based on mutual information [4], label fusion across modalities
remains an open problem. One possible approach is to arbitrarily define weights
based on the mutual information or cross-correlation computed in a window
around each voxel [5], yet the optimality of such an approach is unclear.

A principled way of carrying out label fusion across modalities was presented
in [6]. This method is based on a generative model in which the intensity of the
voxels corresponding to each label follows a Gaussian distribution. The param-
eters of the Gaussian are estimated from the data, making the fusion robust
against changes in modality or MRI contrast. While this approach outperforms
heuristic schemes based on local cross-correlations [7], it still has two disadvan-
tages. First, the performance is poor when the Gaussian assumption is violated,
such as in the thalamus or the putamen in brain MRI scans. And second, since
the fusion only considers the deformed labels from the atlases, it ignores poten-
tially valuable information from their intensities.

Here we propose a generalization of Sabuncu et al.’s model to inter-modality
scenarios. The generative model is essentially the same; however, we do not hy-
pothesize a Gaussian relation between the intensities of the atlases and the target
scan. Instead, we assume a more flexible model based on a semi-parametric or
non-parametric conditional distribution of the intensities of the target given the
intensities of the atlases. Using a Bayesian framework, we first estimate this con-
ditional distribution and also a multiplicative bias field. Then, the segmentation
is computed as the most likely labels given these estimates and the input image.

2 Methods

2.1 Generative Model

The proposed generative model is shown in Fig. 1a, and the corresponding equa-
tions in Fig. 1b. We assume that registration is a preprocessing step: the intensi-
ties {In} and corresponding labels {Ln} of theNatl deformed atlases are constant
during the fusion. M(x) ∈ {1, . . . , Natl} is a discrete, latent membership field
that indexes which atlas generated the label and intensity of the voxel at spatial
location x.M(x) is smooth thanks to a Markov random field (MRF) prior (Eq. 1
in Fig. 1b, where Vx is the 6-neighborhood of x and δ(·) is Kronecker’s delta).

Given M(x), the label of a voxel L(x) is sampled from a categorical distribu-
tion given by a logOdds model [8] defined by the warped labels of atlas M(x)
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(Eq. 2 in Fig. 1b, where ρ is the slope of the model and Dl
n is the signed distance

transform for atlas n and label l ∈ {1, . . . ,L}). This prior has been shown to
outperform taking the label LM(x)(x) directly [3]. Given L(x), the uncorrupted

(i.e., bias field corrected) intensity of the voxel Ĩ(x) is sampled from the condi-
tional distribution p(Ĩ(x)|IM(x)(x), Θ), which depends on the model parameters
Θ (Eq. 3 in Fig. 1b). Here we have made two assumptions. First, that the condi-
tional PDF is stationary in space. Second, we assume that the image intensities
are consistent across atlases, which is fair when the atlases are from the same
modality. This allows us to represent the conditional probability density function
(PDF) with a single, atlas-independent PDF.

For the conditional PDF of intensities, we consider two different models. First,
a semi-parametric (SP) model which describes Ĩ(x) with a Gaussian PDF with
mean and variance depending on IM(x)(x). And second, a non-parametric (NP)

model based on a collection of conditional 1D histograms (h) of Ĩ(x) depending
on IM(x)(x). These two forms of the algorithm allow us to isolate and understand
the effects of the two contributions of this model with respect to [6]: the departure
from the Gaussian model (NP) and using the intensities of the atlases in the
fusion (NP and SP). The models are given by:

Semi-parametric (SP): p(Ĩ(x)|IM(x), Θ) = N (Ĩ(x);μQ[IM(x)], σ
2
Q[IM(x)]

). (1)

Non-parametric (NP): p(Ĩ(x)|IM(x)(x), Θ) = h(Q[Ĩ(x)];Q[IM(x)(x)]), (2)

where Q[·] is a nearest neighbor interpolator that quantizes the intensities of the
target scan and the atlases into discrete sets A and B, respectively.

Finally, Ĩ(x) is corrupted by a low-frequency, multiplicative bias field to yield
the observed intensities I(x) (Eq. 4 in Fig. 1). The bias field is modeled as the
exponential (to ensure non-negativity) of a linear combination of smooth basis
functions {ψk}. The linear coefficients b = {bk} are grouped with the parameters
of the conditional PDF of intensities into the model parameters θ = (b, {h(a; b)})
(NP) or θ = (b, {μb, σ2

b}) (SP). A flat prior distribution p(θ) ∝ 1 completes the
model. Note that the denominator in Eq. 5 in Fig. 1b ensures integration to one.

2.2 Inference

The segmentation L̂ of image I is estimated by maximizing the posterior proba-
bility: p(L|I, {In}, {Ln}). This leads to an intractable integral for which we can
use the approximation that the posterior distribution of the model parameters
is a Dirac’s delta, i.e., p(θ|I, {In}) ≈ δ(θ = θ̂):

L̂ = argmax
L

∫
p(L|θ, I, {In}, {Ln})p(θ|I, {In})dθ ≈ argmax

L
p(L|θ̂, I, {In}, {Ln}),

(3)

Thus, we first need to estimate θ̂ and then use it to compute L̂ with Eq. 3.

Estimating θ̂: the problem here is

θ̂ = argmax
θ

p(θ|I, {In}) = argmax
θ

log p(I|{In}, θ). (4)
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(a)

1. M ∼ 1
Z(β)

∏
x exp

(
β
∑

y∈Vx
δ(M(x) =M(y))

)

2. L(x) ∼ exp
(
ρD

L(x)

M(x)
(x)

)
/
∑L
l=1 exp

(
ρDl

M(x)(x)
)

3. Ĩ(x) ∼ p(Ĩ(x)|IM(x), Θ)

4. I(x) = Ĩ(x) exp
(∑

k bkψk(x)
)

5. p(I(x)|In(x), Θ) =
p

(
I(x)

exp(
∑
k bkψk(x))

∣
∣In(x),Θ

)

exp(
∑
k bkψk(x))

(b)

Fig. 1. Graphical model (a) and corresponding equations (b). Random variables are in
circles, constants in boxes, observed variables shaded and plates indicate replication.

Note that θ does not depend on {Ln}. Optimizing Eq. 4 requires marginalizing
overM , which is intractable due to the MRF. Therefore, we use VEM to compute
an approximate solution by optimizing a lower bound J instead:

log p(I|{In}, θ)≥J(q(M), θ)= log p(I|{In}, θ)−KL[q(M)||p(M |I, θ, {In})] (5)

= H [q] +
∑
M

q(M) log p(M, I|θ, {In}), (6)

whereH [·] is the entropy of a random variable,KL represents the (non-negative)
Kullback-Leibler divergence and q is a distribution over M which is restricted
to having a simpler form than p(M |I, θ, {In}). We alternately optimize J with
respect to q (E step) and Θ (M step).

In the E step, we work with Eq. 5. Maximizing J amounts to minimizing
the KL divergence. The standard “mean field” approximation assumes that q
factorizes as q(M) =

∏
x qx(M(x)), where qx(m) is a categorical distribution

over the atlas indices m = 1, . . . , Natl, and
∑

m qx(m) = 1. This yields:

argmin
q

∑
x

∑
m

qx(m) log
qx(m)

p(I(x)|Im(x), θ)
− β

∑
x

Eqx

⎡
⎣∑
y∈Vx

qy(M(x))

⎤
⎦ . (7)

Building the Lagrangian and setting derivatives to zero gives:

qx(m) ∝ p(I(x)|Im(x), θ) exp[β
∑
y∈Vx

qy(m)], (8)

such that
∑
m qx(m) = 1. We can solve this equation with fixed point iterations.

In the M step, it is more convenient to work with Eq. 6: since we are op-
timizing for θ, we can disregard H(q). Because of the structure of q, we have:

argmax
Θ

∑
x

∑
m

qx(m)

[
log p(Ĩ(x)|Im(x), Θ) −

∑
k

bkψk(x)

]
, (9)

with Ĩ(x) = I(x)e−
∑
k bkψk(x). The solution depends on whether we consider

the SP or the NP model. In the first case, replacing p(Ĩ(x)|Im(x), Θ) by the
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corresponding Gaussian (Eq. 1), taking derivatives with respect to the means
and variances, and setting them to zero gives:

μb =
∑
x

∑
m

wbx(m)I(x)e−
∑
k bkψk(x)

/∑
x

∑
m

wbx(m), (10)

σ2
b =

∑
x

∑
m

wbx(m)(I(x)e−
∑
k bkψk(x) − μb)

2
/∑

x

∑
m

wbx(m), (11)

where wbx(m) = qx(m)δ (Q[Im(x)] = b). Eqns. 10 and 11 are weighted means and
variances depending on the (approximate) membership posteriors qx(m).

For the NP model, we substitute Eq. 2 into Eq. 9 and build a Lagrangian to
ensure integration to one. Taking derivatives and setting them to zero yields:

h(a; b) ∝
∑
x

∑
m

wbx(m)δ
(
Q[I(x)e−

∑
k bkψk(x)] = a

)
. (12)

such that
∑

a∈A h(a; b) = 1/Δ, where Δ is the quantization interval. Again,
Eq. 12 is simply a weighted histogram.

Finally, we use a quasi Newton solver with an explicit line search to optimize
Eq. 9 for the bias field coefficients, both in the SP and BP case.

Computing the Final Segmentation: given θ, estimating the final segmen-
tation with Eq. 3 still requires an intractable sum over M . However, since q(M)

minimizes the KL divergence with p(M |θ̂, I, {In}), we approximate:

L̂ = argmax
L

∑
M

p(L|M, {Ln})p(M |θ̂, I, {In}) ≈ argmax
L

∑
M

p(L|M, {Ln})q(M)

= argmax
L

∏
x

∑
m

qx(m)p(L(x)|Lm)⇒L̂(x)= argmax
L(x)

∑
m

qx(m)p(L(x)|Lm) (13)

Summary of the Algorithm: we initialize the bias field coefficients bk = 0,
and the distribution qx(m) = 1/Natl. Next, we alternate the E and M steps until
convergence. The E step updates q with fixed point iterations of Eq. 8. The M
step first updates the bias field by numerically optimizing Eq. 9 with respect to
{bk}, and then the parameters of the conditional PDF with Eqns. 10, 11 (SP
model) or Eq. 12 (NP). Upon convergence, the final segmentation is computed
with Eq. 13. The method is illustrated with a simple example in Fig. 2.

3 Experiments and Results

We used 39 manually delineated (see protocol in [9]) T1 MRI scans as atlases to
segment 36 brain structures in eight proton-density (PD) scans. The annotations
of the PD scans were made on co-registered T1 data, allowing consistent annota-
tions across the two datasets. FreeSurfer [10] was used to skull-strip the volumes
and intensity-normalize the atlases, since consistent intensities are assumed.
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Fig. 2. Intermediate outputs for a sagittal patch of a PD scan segmented with three
T1 atlases and the NP model. Top row: I , {In}, qx(m) overlaid on I , and segmentation
L (green = putamen, purple = ventricle, blue = caudate); qx(m) highlights where
each atlas contributed to generating I, L. Bottom row: initial and final estimates of
the conditional PDFs h(a; b); the latter are much sharper and emphasize three modes
corresponding to gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF).
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Fig. 3. (a) Box plot of Dice scores for majority voting (black), the Gaussian model [6]
(red) and the proposed SP (green) and NP (blue) methods. Lines are at the three
quartile values, whiskers extend to 1.5 times the interquartile range from the box, and
dots mark outliers. (b-i) Axial slice of a PD scan, (ii) manual labels, (iii) segmentation
from majority voting, (iv) the Gaussian model, (v) the SP model, (vi) the NP model.
Arrows point at mistakes. The color code is: red = CT, white = WM, pink = PT, dark
blue = PD, light blue = CA, green = TH, purple = LV, orange = accumbens.

We used Elastix [11] to register the T1 to the PD scans (b-spline transform,
mutual information). We compared four label fusion methods: majority voting,
the Gaussian model from [6] and the proposed approach (SP and NP). We set
ρ = 1, β = 0.75 (as in [6]), {ψk} to a fourth order polynomial and the number
of bins |A| = |B| = 64. The Dice overlap between the manual and automatically
generated labels was used as measure of performance. Statistical significance
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Table 1. Mean Dice scores (in %, highest in bold) and p-values with respect to NP

Method WM CT LV TH CA PT PD HP AM All combined

Maj. Vot. 75.6 72.8 70.7 85.5 76.2 87.4 81.2 76.3 68.6 77.2
p-value 0.008 0.008 0.008 0.008 0.016 0.078 0.023 0.008 0.008 6.8 10−13

Gaussian 86.3 88.7 77.3 84.9 77.7 84.2 81.1 78.2 69.3 80.8
p-value 0.008 0.008 0.11 0.008 0.008 0.008 0.016 0.078 0.008 8.2 10−4

SP 86.5 84.1 79.6 86.2 83.4 87.4 81.7 76.6 68.9 81.6
p-value 0.008 0.46 0.016 0.008 0.055 0.016 0.023 0.008 0.008 2.8 10−5

NP 83.5 84.3 80.9 88.1 84.6 88.6 83.1 79.6 70.1 82.5

was assessed with paired Wilcoxon signed rank tests. For simpler presentation
of results, we merged the label of each left structure with its right counterpart,
and used a representative subset of structures in the evaluation (as in [3]): white
matter (WM), cortex (CT), lateral ventricle (LV), thalamus (TH), caudate (CA),
putamen (PT), pallidum (PA), hippocampus (HP) and amygdala (AM).

Box plots of the structure-wise Dice scores are shown in Fig. 3a, whereas seg-
mentations for a sample axial slice are shown in Fig. 3b. The p-values for the
statistical tests comparing the NP method (the top-performing algorithm) with
the other competing approaches are shown in Tab. 1. Majority voting produces
decent outputs for the subcortical structures, but fails to extract the convoluted
white matter surface, which is very difficult to register (see Fig. 3b-iii). It also
produces bad results for the ventricles, as illustrated in the same figure. The
Gaussian model gives excellent results for the cortex, but falters when the nor-
mality assumption does not hold. This is often the case for the thalamus and
the putamen. For instance, the latter leaks into the white matter in Fig. 3b-iv.

The NP version of the proposed approach significantly outperforms majority
voting for every brain structure (Tab. 1). It also yields Dice scores significantly
higher than those from the Gaussian model for all subcortical structures. Only
in the cortex and the white matter the performance is inferior; see for instance
the mistake marked by the arrow in Fig. 3b-vi. This is because the registration is
poor for these convoluted structures, making a simple Gaussian intensity model
more suitable. Overall, the mean improvement in Dice score is ∼ 2% over the
Gaussian model and ∼ 5% over majority voting. The SP version also beats
majority voting and the Gaussian model. However, it performs slightly worse
than the NP method, likely due to its inability to describe multimodal shapes
in the conditional intensity PDF (e.g., see atlas intensity range 10-20 in Fig. 2).

4 Discussion

We presented a cross-modality label fusion method based on a generative model
that describes the relationship between image intensities in a SP or NP manner.
The algorithm often converges in less than 15 iterations (about 20 minutes on
a modern PC). The results show that using the intensities of the atlases in the
fusion allows the SP algorithm to outperform previously proposed inter-modality
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label fusion techniques. Moreover, departure from the Gaussian model allows
the NP model to further improve the results. Exploring more flexible SP models
(such as those based on mixtures of Gaussians), incorporating the registration
step into the framework and using more accurate approximations than nearest
neighbors when estimating the conditional intensity PDF remain as future work.
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