On the Design of Fast Prefix-Preserving IP
Address Anonymization Scheme

Qianli Zhang, Jilong Wang, and Xing Li

CERNET Center, Tsinghua University

zhang@cernet.edu.cn

Abstract. Traffic traces are generally anonymized before used in analy-
sis. Prefix-preserving anonymization is often used to avoid privacy issues
as well as preserve prefix relationship after anonymization. To facilitate
research on real time high speed network traffic, address anonymization
algorithm should be fast and consistent. In this paper, the bit string based
algorithm and the embedded bit string algorithm will be introduced. Bit
string based algorithm uses precomputed bit string to improve the
anonymization performance. Instead of only using the LSB of each Rijn-
dael output, the embedded bit string algorithm will take advantage of the
full size Rijndael output to anonymize several bits at the same time. The
implementation can be downloaded from https://sourceforge.net/
projects/ipanon.

1 Introduction

There has been a growing interest in internet traffic research. However, real-world
internet traffic traces are still very rare, only a few organizations would share their
traffic traces (NLANR/MOAT Network Analysis Infrastructure (NAI) project [2],
WIDE project [9], and ACM ITA project [3]). Even with these traces, there still
lack of the most recent traces of high speed network. To make the research on
most recent traffic traces possible, DragonLab (Distributed Research Academic
Gigabit Optical Network Lab) [I] began to establish the real-time traffic analysis
environment.

In DragonLab, network traffic is collected from Tsinghua university campus
network border router. Tsinghua University campus network is the first and
the largest campus network in China, it is connected to China Education and
Research Network with two gigabit links. Experimenters can assign incoming or
outgoing traffic from one of these two links, and then this traffic will be replayed
to the experimenter’s measurement point.

To avoid the leak of users’ privacy information, traffic traces are subject to
an anonymization process [] [5] [6] before being studied: payload will be erased,
the source IP address and destination IP address of packets will be anonymized.
IP address anonymization is one of the major steps in this process.

There have been many anonymization schemes available. A straightforward
approach is to map each distinct IP address appearing in the trace to a ran-
dom 32-bit address. The only requirement is that this mapping be one-to-one.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 177 2007.
© Springer-Verlag Berlin Heidelberg 2007

178 Q. Zhang, J. Wang, and X. Li

However, the loss of the prefix relationships among the IP addresses renders the
trace unusable in situations where such relationship is important (e.g., routing
performance analysis, or clustering of end systems [7]). It is, therefore, highly
desirable for the address anonymization to be prefix-preserving. That is, if two
original IP addresses share a k-bit prefix, their anonymized mappings will also
share a k-bit prefix.

Inconsistent mapping is also undesirable. For inconsistent mappings, same
original address may be mapped into different anonymized addresses when ap-
plied independently on more than one traces. Consistent mapping is important
because of the following reasons. First, if the traffic anonymization process stops
and restarts after a while, the previous and current anonymized traffic traces will
take different mappings, thus make the consistent research impossible; secondly,
there is a real need for simultaneous (yet consistent) anonymization of traffic
traces in different sites, e.g., for taking a snapshot of the Internet. It would
be very cumbersome if hundreds of traces have to be gathered first and then
anonymized in sequence.

Speed of TP address anonymization is also worth a serious consideration in
research on real time traffic. Even for off-line anonymization, speed is important
since slow anonymization algorithm may require traffic to be stored to disk
beforehand, which is time consuming and inconvenient.

In this paper, we will propose a group of novel prefix-preserving IP address
anonymization algorithms; they are all based on the precomputation of random
bits. The rest of this paper is organized as follows. In section 2 we briefly in-
troduce related works, including the operation of TCPdpriv and Crypto-pan. In
section 3 we describe our schemes in details, section 4 will discuss some concerns
in implementation and its performance. The paper is concluded in section 5.

2 Related Works

2.1 TCPdpriv

One possible prefix-preserving approach is adopted in TCPdpriv developed by
Greg Minshall [§] and further modified by K. Cho [9]. TCPdpriv can be viewed
as a table based approach. It stores a set of < raw, anonymized > binding pairs
of IP addresses to maintain the consistency of the anonymization. When a new
raw IP address a needs to be anonymized, it will try to find the longest prefix
match and anonymize the rest in random. The new generated pair will be added
to the binding table. Since only the memory lookup and random generation are
required in this algorithm, it may operate very fast.

However, this algorithm is not consistent: the mappings are determined by the
raw I[P addresses and the relative order in which they appear in a trace. There-
fore, a raw address appearing in different traces may be mapped into different
anonymized addresses by TCPdpriv, hence the inconsistency. Also, to store all
the binding pairs a large amount of memory will be consumed.

On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme 179

2.2 Crypto-pan

Crypto-pan [10] [11] is a deterministic mapping function from raw addresses to
anonymized addresses based on the Canonical Form Theorem [II]. With the
same key, it can anonymize traffic traces consistently. In this algorithm, f;,i =
1...n are defined as follows: fi(a1az...a;) = L(R(P(aiaz...q;);K)),i =
0,1,...,n — 1, where L returns the least significant bit, R is a pseudo-random
function or a pseudo-random permutation (i.e., a block cipher) such as Rijn-
dael [12], and P is a padding function that expands ajaz...a; into a longer
string that matches the block size of R. K is the cryptographic key used in the
pseudo-random function R. Since the cryptography based anonymization func-
tion is uniquely determined by K, same address appearing in two different traces
will be mapped to the same anonymized address if the same key is used.

However, to anonymize an IP address, Crypto-pan needs 32 rounds of Rijndael
encryption, thus makes it unsuitable for real time anonymization without special
hardware. It can only anonymize 10000 IP addresses per second with a PIII
machine [IT]. Consider the overhead of packet capture, the Crypto-pan is not
practical for anonymization in wire speed. Thus, unlike Tcpdpriv, Crypto-pan
can only be used off-line.

3 Bit String Based Schemes

3.1 Methodology

Assume S is a random bit string of length Lg, and P; is a function from {0, 1}’
to{0,Lg—1},fori=1,2,...,n—1and Py = 0. Let B(S,n) be the nth bit of S,
define f;(a1az...a;) = B(S, P;(a1az...a;)), The anonymization process would
be:

Given an IP address a = ajaz...an, let F(a) = djal...a), where o, =
a; P fi—1(a1,as2,...,a;—1), and @ stand for the exclusive-or operation, for i =
1,2,...n.

According to Canonical Form Theorem [T1], the map is prefix-preserving. This
is also straightforward since given a = ajas...a,, the anonymized IP address
aydly...al is generated with a. = a; @ B(S, Pi—1(a1az...a;—1)), which only
depends on aqas...a;_1.

The length of bit string S is crucial for the security of anonymization. We
have the following results:

Lemma 1. If for any aiaz...a; # biba...bj, Pi(a1az...a;) # Pj(biba...bj),
0<i,7<n-—1, string S is at least 2™ — 1 bits size.

Proof. For any aias...a; # biba...bj, Pi(a1az...a;) # P;j(bibs...b;), imply:

1. Ifl#j7 1 §i7j§n—17Pi(alag...ai)#Pj(blbg...bj).
2. Ifi:j7a1a2...ai #blbg...bhl §i§n—1,Pi(a1a2...ai) #Pl(blbgbl)

180 Q. Zhang, J. Wang, and X. Li

Consider 2, since the number of all possible i bits prefix is 2¢, P;(ajaz...a;) has
at least 2¢ different return values. Now consider 1 and Py = 0, string S has at
least 1 +2+4+...4+2""1 =27 — 1 different positions, thus the length of S is
at least 2" — 1 bits.

To prefix-preserving anonymize the complete 32 bits IPv4 address, a string of
232 — 1 bits (or about 512M bytes) long is required for the maximum security
level. The bit string S could be precomputed and preloaded to accelerate the
anonymization process. Since memory is rather cheap now, this algorithm can
operate very fast with commodity hardware. In situations where anonymizing
the first 24 bits is enough, a shorter string with 224 — 1 bits (or about 2M bytes)
long is required.

3.2 Construction of P; Function

Now the problem is how to construct bit string S and find the proper position
mapping function P;. An ideal group of P;,7 =1,2,...,n — 1 should be easy to
present and fast to calculate. We propose the binary tree traversal based method
to find such mapping functions. The tree is formed as:

— the root node of the tree is Py = 0;
— the left child node of P;(ajas...a;) is Piyi(aras...q;0) and the right child
node is Piyq(arasg...a;l).

Thus the problem becomes to assign values of 1 to Lg — 1 to all nodes (except
the root node) of this binary tree. We can think of this problem to assign a
traversal sequence number to each node. Though the assignment scheme may be
arbitrary, to be simple in implementation, we only consider two typical schemes
in this paper: the breadth first scheme and the depth first scheme(Fig. 1).

Fig. 1. Breadth first (left) scheme and depth first (right) scheme

For the breadth first scheme, the P; function is: P;(ajas...a;) = 20 — 1 +
VAL(aras...a;),i=1,2,...,n—1. VAL(a1as .. .a;) is the value of ajas .. .a;.

Consider .
R-(alag R a,») =2'—-1+4+ VAL(a1a2 .. .ai)

= 2(21.71 -1+ VAL(a1a2 . ai,l))
+1+a;
= 2Pi_1(a1a2 S Cli_l) +a; +1

(1)

On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme 181

Thus, P; function can also be presented as:

R(alag R ai) = 2Pi,1(a1a2 .. a,;l) +1

ifai =0
B(alaz...ai) =2Pi_1(a1a2...ai_1)—|—2 (2)
ifai =1

1=1,2,...,n—1
For the depth first scheme, the P; function is:

Pi(a1a2 R ai) = Pi,1(ala2 R ai,1) +1

ifa; =0 ‘
Pi(alag...ai) :Pifl(ala2~o~aif1)+2nil (3)
ifa; =1

i=1,2,...,n—1

In both schemes Py = 0.

3.3 Reuse Distance Based Data Locality Analysis

Access to large memory often incurs many cache misses and thus seriously af-
fects the performance. Since the cache policy is often complicated and highly
dependent on the specific CPU’s architecture, we will use the reuse distance [13]
to measure the cache behavior. The reuse distance of a reference is defined as
the number of distinct memory references between itself and its reuse. For bit
string base algorithms, to anonymize the first k bits prefix, a total of & mem-
ory accesses (the address of each access is S[0], ..., S[Pi—1(aoas . ..ak—1)/8]) are
required. Since each anonymization round starts from the access to S[0], we
will evaluate the reuse distance to anonymize one IP address. Note the fact that
Pi(ayasy . ..a;a;+1) > Pi(aias .. . a;) always holds for depth first and breadth first
schemes, only consecutive accesses may result in accesses to the same cache line.
We have the following results.

Lemma 2. For a cache line size of ¢ = 2™ bits, Lg = 2k — 1 bits and k < ¢ <
Lg, To anonymize k bits, for breadth first scheme, the reuse distance N for each
address’ anonymization satisfy

E—1-—m< N<k—m (4)
For depth first scheme, N satisfy
1<N<k-m (5)

Proof. Defined Dif f(i) = Piy1(araz...a;+1) — Pi(a1az ... a;). For breadth first
scheme, since

Dfo(’L) = .PiJrl (a1a2 N ai+1) — Pi(a1a2 . ai)
= R(alag .. ai) + 14 a4

(6)

182 Q. Zhang, J. Wang, and X. Li

For i > m,Diff(i) > 2™, and Dif f(i) = 2™ only when i = m,a; = as =
... = aj+1 = 0. Thus if ¢ > m + 1, each access is in a different cache line.
Since i < k—1,itiseasytosee N>k—1—(m+1)+1=k—1—m and
N<k—1l-(m+1)+2=k—m.

For depth first scheme, since Dif f(i) = 1 if a;41 = 0, and Dif f(i) = 2F=1~7
if a41 =1. Fori <k—1—m, if and only if a; = 1, Dif f(i) > 2™, an access is
in a different cache line. When IP address is 0, only one memory read is required
(k < ¢). The worst case happens when all bits are 1, in which case k — m cache
misses. If for each bit 1 and 0 have the same possibility, the expectation of reuse
distance is (k —m)/2.

It looks like that depth first algorithm will be faster than breadth first algorithm
in average for single IP address anonymization given that the cache miss num-
ber is the only affecting factor. When anonymizing a number of IP addresses, the
scenario will be a little different. For breadth first algorithm, the most frequently
used bits are all located in the beginning of the bit string S. It is generally easier to
cache the most frequently used memory. In contrast, the most frequently used bits
in depth first algorithm are relatively sparsely located in the bit string. For random
generated IP addresses, suppose the size of cache is C bits and the size of of cache
line is C';, bits, in situation where half of the cache size is used to cache the most
frequently used C'/2 bit string, for breadth first algorithm, the first loga(C/2) bits’
anonymization will not incur a cache miss, while for depth first algorithm, since
half of the most frequently used bit (the 1 branch) are sparsely located across the
bit string, thus only the first log2(C'/2/CL) + 1 bits will be anonymized without
cache miss. In experiment, we find that depth first algorithm is generally slower
when k < 31. This indicates that to anonymize single IP address and to anonymize
a large number IP address consecutively are quite different.

3.4 Block Tree Based Prefix Preserving Algorithms

From the above analysis, it can be inferred that if the bit string can be completely
loaded into cache, the algorithm would be greatly accelerated. Thus a group of
block tree based algorithms are designed. Block tree algorithm is constructed
based on the depth first or breadth first bit string algorithms. The basic idea
behind this is to divide one IP address into several parts, for each part, there is
a correspondent bit string block. These blocks are also organized as a tree. The
algorithm is defined by each part’s bit number, the position mapping function
among blocks and the position mapping function inside each block.

Assume to anonymize the first k& bits of IP address, there are n parts and the
i'th part has L;,i = 0,...n — 1 bits, Y7 L, = k, the part 7 of IP address IP
is part(i,ip), and the bit string is S;, the algorithm is:

fori=0:n-1
anonymize(part(i,ip), L;, S(P;(ip))) (7)
end for

P;(ip) determines which block of the string S should be used to anonymize the
1’th part of IP address ip. P can be breadth first position function or depth first

On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme 183

position function. The anonymization function can also be depth first or breadth
first algorithms. About the length of bit string .S, it can be proved that string S
also requires at lease 2 — 1 bits long.

It is because, to anonymize the L; bits of IP address, about 2% — 1 bits are
required. Assume there are B; blocks for the i’th part of the IP address. For the
part(i,ip) anonymization, the total number of bits required is B;(2%¢ — 1) bits.
After anonymization, each block has 2% branches. Thus:

By =1
Bi = B;_12%i ®)

Thus the total number of bits required is

N =" "B(2% —1)
=S (Bi2ki - By)
n—1

: i=0 (Bi+1 - Bi) (9)

If L;=1,i=0,...,n—1, it becomes the depth first or breadth first algorithm.

Comparing to the simple depth first or breadth first algorithms, with proper
parameters, block tree based algorithms may further minimize cache misses. For
example, for CPU with 512K cache and 128 bytes size cache line, to anonymize
29 bits prefix,split the 29 bits into two parts: 21, 8, in the optimal situation, the
first bit string (256K bytes) is loaded into cache and only one cache miss will
be incurred to anonymize one address.

3.5 Embedded Bit String Based Prefix Preserving Algorithms

Embedded bit string based approach is another variant that aims to reduce the
memory required. As described before, to anonymize 32 bits IPv4 addresses, about
512M bytes memory is required. It makes the algorithm infeasible for memory-
limited devices like network processors. Also, it is impossible to anonymize IPv6
addresses with this algorithm, even if only anonymize the first 64 bits prefix (sub-
net prefix). Embedded bit string based algorithm can be thought as to divide one
IP address into several parts, for each part, there is a correspondent bit string
block. Unlike block tree based approach, these blocks are generated dynamically
with cryptographical secure method.

Assume to anonymize the first k& bits of IP address, there are n parts and the
i'th part has L;,i = 0,...n — 1 bits, Y7"' L, = k, the part 7 of IP address IP
is part(i,ip), and the bit string is S;, of f; is the first bit offset of the ¢’th parts’
in IP address, the algorithm is:

fori=0:n-1
S: = encrypt((ip >> (32— of 1)) << (32 — of ;)
anonymize(part(i,ip), L, S;)

end for

(10)

184 Q. Zhang, J. Wang, and X. Li

For example, if the encrypt function is 128 bits block cipher, each time 7
bits can be anonymized. For an IPv4 address, about 5 rounds are needed. To
anonymize the first 64 bits prefix of IPv6 addresses, about 10 rounds are neces-
sary, comparing to 64 rounds of Rijindael encryption of Crypto-Pan. Obviously,
in this algorithm, cache misses are not the deciding factor for performance. It is
welcome since a widening gap between processor and memory speeds has been
witnessed in recent years.

4 Implementation and Experiment Results

4.1 Implementation

The bit string S is generated with some pseudo-random number generator. The
selection of such PRNG is arbitrary, in this paper, we use the ISAAC [I4] algo-
rithm. ISAAC (Indirection, Shift, Accumulate, Add, and Count) generates 32-bit
random numbers. Averaged out, it requires 18.75 machine cycles to generate each
32-bit value. The results are uniformly distributed, unbiased, and unpredictable.
ISAAC is a secure pseudo random number generator for practical applications
and hasn’t been broken since it was published 5 years ago. No bias has been
detected either. Recent research indicates an estimated known plain text attack
on ISAAC may require a time of 4.67 x 10240 [T5]. The initial seed of ISAAC is
generated from secret key K via a cryptographic secure pseudo-random number
generator. For example, HMAC [I6] algorithm or some block cipher.

The anonymization process will load the large bit string .S in advance, then
for each input IP address, calculate the f;(ajas...a;) = B(S, P;(aiaz...a;),i =
1,2,...,n, fo = B(S,0)

Now consider the B and P function. B(S, bit) function is defined as:

((S[bit >> 3]&(0x80>>(bit & 0x07)))!= 0)

We implement two P(ip,i) functions corresponding to the breadth first scheme
and the depth first scheme. P(ip, i) for breadth first scheme and depth first are:

(ip& (0x80000000>>1)) 7
((P(ip,i-1)<<1)+1)
:((P(ip,i-1)<<1)+2)

(ip& (0x80000000>>1)) 7
(P(ip,i-1)+(1<<(32-i))
: (P(ip,i-1)+1)

For block tree based algorithm, we use the breadth-breadth approach, that is,
the construction inside the blocks or among blocks are all breadth first based.
The selection of number of parts and each part’s bit number often depend on
the specific CPU’s cache size. In this paper, we use the two level approach: the
first bit string is 64K bytes and will anonymize the first 19 bits, the rest bits
will be anonymized by another bit string.

For embedded bit string algorithm, we use Rijindael/128 algorithm, thus each
round will anonymize 7 bits.

On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme 185

The implementation can be downloaded from https://sourceforge.net/
projects/ipanon.

4.2 Experiment Results

We evaluate the these implementations in two systems: one is PIV 2.8G intel
CPU with 1G memory(machine A) and the other is PIV 1.8G intel CPU with
1G memory (machine B). Both of them have a L2 cache size of 512K bytes and
a cache line size of 128 bytes. We also modify Crypto-pan for a comparison. For
each scheme, we generate 16,777,216 (16M) sequential or random IP addresses,
and measure the elapsed time in anonymization. The input IP addresses are in
32 bits integer format. We measure the elapsed time after the initialization (for
bit string based scheme, after the bit string is generated and loaded). The results
are shown in table 1 and table 2. The first row is from machine A and the second
row is from machine B.

Table 1. Experiment results for anonymization(random input)

depth breadth cpan block tree embedded bit string
Time(us) 1.91 1.98 7.75 1.12 1.45
Time(us) 2.32 2.77 11.34 1.60 2.26

Table 2. Experiment results for anonymization (sequential input)

depth breadth cpan block tree embedded bit string
Time(us) 0.24 0.24 7.24 0.37 1.20
Time(us) 0.37 0.37 11.05 0.58 1.84

Experiment result shows that bit string based schemes(depth first, breadth
first, block tree, embedded bit string) are 3 to 6 times faster than Crypto-pan in
the worst case. For 32 bits random input anonymization, depth first scheme is
a little faster than breadth first scheme, while embedded bit string algorithm is
faster than both. Block tree algorithm is considerably faster than all the other
schemes. A comparison of the machine A and machine B is also interesting. For
CPU sensitive algorithms like crypto-pan and embedded bit string, a perfor-
mance increase of 40% is gained from slower machine B to A; while for memory
access sensitive algorithms like breadth first or depth first algorithm, only about
20% is gained. Although the performance of CPU has increased a lot, the speed
of memory access is roughly the same. Previous experiments in a PIV 1.4G
machine indicate that depth first algorithm is more than 10 times faster than
Crypto-pan. For 1.8G machine this ratio is 4.89 and for 2.8G machine this ratio
is 4.06.

We evaluate the time required vs. number of bits to be processed, the re-
sults are shown in Fig.2. For algorithms like depth first algorithm, breadth first

186 Q. Zhang, J. Wang, and X. Li

algorithm and block tree algorithm, the property of input can affect the perfor-
mance dramatically. For example, sequential input may be more than 6 times
faster than random input for depth first algorithm. The reason is that 16,777,216
sequential TP addresses share a common 8 bits prefix, thus has far less cache
misses and the deciding factor is the computation overhead. For schemes that
are not cache miss sensitive like Crypto pan and embedded bit string algorithm,
there is little difference between sequential and random scenarios.

For random input, the computation time of breadth first and depth first
anonymization algorithms are roughly linear before 22 bits with a fixed slope
of computation overhead per bit. The time is roughly linear after 22 bits with
the increasing cache misses, though the slope is a lot steeper. The embedded bit
string based algorithm, is a staircase function since there is little overhead inside
each 7 bits block. For block tree based approach, it can be separated into 3 lines,
for the first line (1-22), since the complete bit string can be loaded into cache,
there is little cache misses. Because Intel CPU’s cache line size is 128 bytes, from
22 to 29, there is only one cache misses. From 30 to 32 bits, there will be one
cache misses added per bit increased.

1.4 2 5
- breadth ~ breadth o
1.2 * o depth
P ept o
© depth wxx® ¥
1.5 * fcpan .
1 * fcpan * ok Fax®
+ btree .
+ btree * *
0.8 ek . °" N
3 g 1 et +
0.6 - or T
. * P ******** o+++++
0.4 +
L f4+T ++g++ 05 ** ++++56
0.2 +**+++++o®®®®®®.®® L +++55$5°ooo
é***ééégé@@eeww 5666668997
0]
0 556660008 0 60¢
0 5 10 15 20 25 30 0 5 10 15 20 25 30
bit bit

Fig. 2. Processing time per address (averaged from 16,777,216 IP addresses anonymiza-
tion), sequential input (left) and random input (right). Depth first algorithm is short-
ened as depth, breadth first algorithm as breadth, Crypto-pan as cpan, block tree
algorithm as btree and the embedded bit string algorithm as fcpan.

The IP addresses in real traces are often more complex: addresses inside ISP
are heavily clustered while addresses outside ISP may be very random. To eval-
uate the performance of these anonymization scheme in real environment, we
anonymize a public 24 hours traffic trace provided by WIDE [9]. The trace is
captured on Feb 27, 2003 and is stored in pcap format. It contains a total of
364,483,718 packets. After gzip compression, the traffic trace occupies about 10G
disk space. The proposed schemes are applied on it. Traces after anonymization
are also stored in disk in pcap format. As shown in table 3, bit string based
schemes are much faster than Crypto-pan.

On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme 187

5

Table 3. Experiment results for anonymization of real traces

Time PPS
Depth first 3437.3447s 105,566
Breadth first 3544.4881s 102,357
Crypto-pan 20338.0471 17,841
Depth first 24 2607.2846s 139,175
Breadth first 24 2570.0872s 141,189
Crypto-pan 24 15757.2146s 23,028
Block tree 3195.3225s 113,562
No anonymization 1923.2942s 188, 670

Conclusion

In this paper, we propose a group of novel prefix-preserving IP address anonymiza-
tion algorithms which all base on the bit string based algorithm. Experiment re-
sults indicate that these algorithms are all much faster than Crypto-pan.

More research is still going on to accelerate the anonymization speed so that

anonymization of IPv6 addresses in gigabit wire speed is possible.

Acknowledgment

This research was supported by the research Program of China (863) under
contract number 2005AA112130 and research Program of China (973) under
contract number 2003CB314807.

References

w

o]

10.

. DragonLab, http://www.dragonlab.org/
. McGregor, T., Braun, H., Brown, J.: The NLANR network analysis infrastructure.

IEEE Communications Magazine 38(5), 122-128 (2000)

. The Internet traffic archive (April 2000), http://ita.ee.1lbl.gov/
. Patarin, S., Makpangou, M., Pandora, M.: A flexible network monitoring platform.

In: Proceedings of the 2000 USENIX Annual Technical Conference (June 2000)

. Peuhkuri, M.: A Method to Compress and Anonymize Packet Traces. SIGCOMM

IMW (2001)

. Pang, R., Paxson, V.: A high-level programming environment for packet trace

anonymization and transformation. SIGCOMM (2003)

. Krishnamurthy, B., Wang, J.: On network-ware clustering of web clients. In: SIG-

COMM (2000)

. Minshall, G.: TCPdpriv Command Manual (1996)
. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the wide project. In:

Proceedings of USENIX 2000 Annual Technical Conference: FREENIX Track, San
Diego, CA (June 2000)

Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: On the design and performance of
prefix-preserving IP traffic trace anonymization. In: SIGCOMM IMW (2001)

http://www.dragonlab.org/
http://ita.ee.lbl.gov/

188

11.

12.

13.

14.

15.

16.

17.

Q. Zhang, J. Wang, and X. Li

Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address anonymiza-
tion: measurement based security evaluation and a new cryptography-based scheme.
In: ICNP (2002)

Daemen, J., Rijmen, V.: AES proposal: Rijndael, Tech. Rep., Computer Security
Resource Center, National Institute of Standards and Technology (February 2001),
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

Beyls, K., D’Hollander, E.: Reuse distance-based cache hint selection. In: Procced-
ings of the 8th International Euro-Par Conference (August 2002)

Jenkins, B.: ISAAC: a fast cryptographic random number generator,
http://burtleburtle.net/bob/rand/isaac.html

Pudovkina, M.: A known plaintext attack on the ISAAC keystream generator,
http://eprint.iacr.org/2001/049.pdf

Krawczyk, H., Bellare, M., Canetti, R.: RFC 2104: HMAC: Keyed-Hashing for
Message Authentication (February 1997)

Ylonen, T.: Thoughts on how to mount an attack on tpcpdriv’s ”-50” option, in
TCPpdpriv source distribution (1996)

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
http://burtleburtle.net/bob/rand/isaac.html
http://eprint.iacr.org/2001/049.pdf

	On the Design of Fast Prefix-Preserving IP Address Anonymization Scheme
	Introduction
	Related Works
	TCPdpriv
	Crypto-pan

	Bit String Based Schemes
	Methodology
	Construction of P_i Function
	Reuse Distance Based Data Locality Analysis
	Block Tree Based Prefix Preserving Algorithms
	Embedded Bit String Based Prefix Preserving Algorithms

	Implementation and Experiment Results
	Implementation
	Experiment Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

