
M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 605 – 613, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Study on Implementation of High-Performance 
GIServices in Spatial Information Grid 

Fang Huang1,2,4 , Dingsheng Liu1, Guoqing Li1, Yi Zeng1,3,4, and Yunxuan Yan1,4 

1 Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 
100086, P.R. China 

2 Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing  
100101, P.R. China 

3 Institute of Electronics, Chinese Academy of Sciences, Beijing 100090, P.R. China 
4 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China 

{fhuang, dsliu, gqli, yzeng, yxyan}@ceode.ac.cn 

Abstract. Providing geo-spatial data services (GDS) and processing functional-
ity services (PFS) are the key issues in spatial information grid (SIG). Espe-
cially, it‘s crucial for SIG to offer PFS related to Geographic Information  
Science (GIS), instead of just focused on Remote Sensing (RS) field. Further-
more, implementing high-performance GIServices is the main task of SIG to of-
fer PFS for GIS. Lacking of high-performance GIServices mainly resulted from 
the limitations of architecture as well as the complexity for services implemen-
tation and encapsulation. Based on existing SIG platform, we propose the new 
architecture of SIG, upon which the constituted GIS nodes can provide GISer-
vices. Within the improved architecture, some parallel GRASS GIS algorithms 
programs, which are built by different parallelization patterns and can run in 
cluster with better efficiency, are encapsulated to high-performance GIServices 
guiding by certain generic mode. Lastly, the analyses of the test demonstrate 
that the approach can reach our aims. 

Keywords: Spatial Information Grid (SIG); GIServices; Cluster; GRASS GIS. 

1   Introduction 

Generally, spatial information grid (SIG) is a fundamental infrastructure that can 
collect and share all types of geospatial information rapidly and effectively, with 
powerful capabilities for service on demand, geospatial data management and infor-
mation processing. In addition, SIG is a distributed environment that combines re-
sources such as geospatial data and computing, story and processing tools to supply 
services to geospatial applications [1]. 

The current SIG platform was supported by the Hi-Tech Research and Development 
Program of China [2]. It is comprised several grid nodes such as data grid node, com-
puting grid node, controlling and management node, which are built based on basic grid 
container. Moreover, the platform integrated such software as Titan (one type of com-
mercial software for RS image processing) [3], PIPS (one parallel RS image processing 
software in cluster developed by CEODE, CAS) [4]. In all, the platform can provide 
both geo-spatial data services (GDS) and processing functionality services (PFS). The 



606 F. Huang et al. 

former can handle terabytes of data; the latter not only provides normal RS services 
(came from sequential RS algorithms), but also offers some high-performance RS ser-
vices (encapsulated from parallel RS algorithms in cluster with high performance and 
better efficiency). However, current PFS in SIG have not extended to GIS field yet. 
Meanwhile, to the extent that it’s crucial and full of challenges to provide some high-
performance GIServices in SIG, which mainly resulted from: (1) The existing architec-
ture can not flexibly suitable for extending GIS node to provide GIServices, because the 
node construction and services procedure for GIS is much more different than that of 
RS; (2) It’s difficult to get some parallel GIS programs running in Linux cluster utilizing 
common commercial GIS packages; and (3) Lacking of some instructions to guide the 
GIServices implementation. 

Owing to the limitations, most geospatial end users cannot access the services related 
to GIS available through SIG. Thus, the challenges that arise are how to overcome the 
architecture limitation and how to implement some GIServices, especially some algo-
rithms processing functionality with one easy and convenient approach. Fortunately, the 
paper puts forward new layout of SIG, which can support GIS nodes and provide GISer-
vices. Within the improved architecture, some parallel GRASS GIS (Geographic Re-
sources Analysis Support System)[5] algorithms programs, which are reconstructed by 
different parallelization patterns with better speed-up and efficiency, are encapsulated to 
high-performance GIServices in cluster with assistance of SIG tools.  

The paper is organized as follows. Section 2 gives a brief introduction to SIG’s 
improved architecture. Based on this, in Section 3, various parallelization patterns for 
extracting some GIS parallel programs from GRASS GIS package are proposed. Sub-
sequent section mainly concentrates on the encapsulation mode for those parallel 
programs, and explains the service invoking flow. In Section 5, one practical way is 
put forward to evaluate the efficiency of those high-performance GIServices based on 
one test example. Finally, Section 6 gives some conclusions. 

2   Improved Architecture and Analyses for Implementation 

2.1   Improved Architecture 

As vector, one data structure type of GIS, has different characteristics from RS, on 
which make the algorithms based become relative complicated. Thus, the difference 
makes it much difficult to extract some parallel programs from the GIS package in 
Linux cluster, and to wrap into GIServices, especially into the high-performance GIS-
ervices. Meanwhile, the existing architecture of SIG considered litter to the related 
aspects, which makes it difficult to provide GIServices in SIG platform directly. Thus, 
the overall layout of SIG need be improved when considering these factors. The new 
architecture is just illustrated as Fig.1. 

In Fig.1, SIG container is the fundamental part of SIG, which is the middleware 
combination of several grid tools that is quite suitable for using grid technology in geo-
spatial field. Through container, the different grid nodes can be easily to communicate 
and achieve one task collaboratively in the distributed heterogeneous environment.  

In the overall arrangement, there are 4 types of nodes in SIG: SIG management & 
controlling node (SIG MC Node), geo-spatial data Grid Service node (GDS Node), 
processing functionality service node (PFS Node), and SIG Web portal. 



Study on Implementation of High-Performance GIServices in Spatial Information Grid 607 

 

Fig. 1. Improved architecture of SIG. In the initial stage, there are only some RS nodes. In the 
new arrangement, some GIS nodes are added and can provide some GDS and PFS of GIS. 
Especially, the new architecture facilitates providing high-performance GIServices.  

SIG Web portal is the only entrance of SIG. Through the authentication and au-
thorization, the user can select the appropriate services.  

SIG MC Node is the controlling and management centre of SIG. It not only man-
ages all kinds of the operations as authentication and authorization, transaction con-
trolling in SIG Web portal, but also takes responsibilities for Grid services node, com-
prising updating of services registry information, version management, node 
maintenance, state controlling, resources scheduling and services controlling. 

GDS Node can publish the storied RS/GIS data with the form of services through 
SIG. Those services called GDS for RS and GDS for GIS, respectively. The users can 
share or download them through SIG Web portal. 

Meanwhile, PFS Node can serve PFS related to RS and GIS, respectively called 
PFS for RS and PFS for GIS. Among those 2 types of PFS, they are respectively di-
vided into normal PFS (sequential programs before encapsulation) and high-
performance PFS (parallel programs in cluster before encapsulation) according to the 
computing environment and other factors. Thus, we can provide 4 kinds of PFSs, 
namely, S-PFS for RS/GIS and HP-PFS for RS/GIS.  

2.2   Analyses for High-Performance GIServices Implementation 

From the above, we know that high-performance GIServices here ascribes to HP-PFS 
for GIS. Similarly, the procedure for high-performance GIServices can be deduced 
from that of HP-PFS for RS, and mainly includes:  

Step 1: It’s critical to get some parallel GIS programs with high speed-up and bet-
ter efficiency in Linux cluster; and  

Step 2: Guiding by some encapsulation mode, those programs can be encapsulated 
into SIG services; 

Relatively, step 1 should be paid more attention for implementation high-
performance GIServices, because: (1) Utilizing commercial GIS packages, we can not 
get some parallel programs with certain GIS algorithms according with our demands, 



608 F. Huang et al. 

for we can not get any source codes of them; and (2) Those commercial packages 
mostly run in Windows, while our computing platform is Linux system. From the 
point of performance and convenience, it also adds extra difficulties to the first step. 

Just because those factors, the subsequent step cannot work due to lacking of some 
parallel GIS algorithms programs produced in step 1. 

2.3   Our Approach 

With carefully studies, we select one open source GIS package in Linux, GRASS 
GIS, as our research object, which can overcome the difficulties mentioned above. 
The following sector will discus several parallelization patterns to it, through which 
some parallel GRASS GIS modules with better speed-up can be easily reconstructed. 

3   Reconstructed Parallel GIS Programs Based on GRASS GIS 

Our cluster is Linux based system established by commodity PCs, and belongs to 
shared disk architecture. In general, it needs some special libraries such as MPI (Mes-
sage Passing Interface) [6] to develop parallel programs on it.  

3.1   Several Parallel Patterns for GRASS GIS   

Parallel programming involves developing a single computer program in such a way that 
it can be executed by more than one processor simultaneously. Data partitioning and 
function partitioning are effective parallel programming techniques for most applications 
[7, 8]. Taken account of the characteristics of cluster, the database and other factors of 
GRASS GIS, we tentatively put forward several parallel patterns for GRASS GIS. Those 
patterns mainly comprise multi-user data paralleling pattern (MUDPP), GRASS GIS 
algorithm parallel pattern (GGAPP) and duple parallel pattern (DPP).  

MUDPP is the method of data partitioning based on the multi-user runtime envi-
ronment (MURE) and geo-database of GRASS [9]. In fact, MUDPP is the develop-
ment mode of SPMD (single program multi data). GGAPP dedicates to develop some 
parallel programs with function partitioning technique. Those independent modules 
concentrated on v.path and v.buffer. DPP is the integration of MUDPP and GGAPP.  

For the limitation of paper space, we don’t further to specify the last 2 patterns, 
which deserve further study and will be introduced in certain special articles. Namely, 
here we only focus on MUDPP. 

3.2   Working Principle, Generic Mode of MUDPP 

In MUDPP, some GRASS mapsets belong to one LOCATION are established both in 
master and slave nodes of cluster. The working principle of MUDPP is described as 
follows. Firstly, the mapset belongs to master node will partition the input map into 
litter subparts and send instructions to the corresponding mapsets located in slave 
nodes. When the slave mapsets finished their own subtasks by receiving and invoking 
the same processing instructions concurrently, the master will merge the sub-results 
as the entire output map. Of course, the output must be identical to the processing 
result when the same task processed in sequential.  



Study on Implementation of High-Performance GIServices in Spatial Information Grid 609 

Thus, the problems of data partitioning and merging in the course of input and out-
put should be attached sufficient importance to. As GRASS has only 2 data type, 
raster and vector [10], if we can solve their partitioning and merging problems, some 
of the GRASS modules can be paralleled in cluster without many changes in their 
codes. The deception is just what our generic model [9] dedicates to achieve. 

3.3   Realization of MUDPP 

In order to accomplish MUDPP, it is requirement to establish some modules firstly, 
which includes 2 kinds: partitioning & merging modules, and universal module. The 
former can partition and stitch the input/output dataset of raster/vector. The latter can 
parallel several GRASS GIS functionalities with one universal program by invoking 
the other modules. The functionalities of those modules are listed in Table 1. 

Table 1. In MUDPP, p.universal can obtain the parallelization GRASS modules by invoking 
the remainders  

Module name Functionality 
RunModuelI-
nOneUser.sh 

Start GRASS GIS in one mapset either in master or slave, thus the 
functionality modules can run on the active mapset. 

p.universal The implementation of MUDPP. Within the pattern, the parallel 
GRASS GIS modules are reconstructed with the method of SPMD.  

p.r.in.partition Finished the partitioning processing for raster map. 
p.r.out.merge Accomplished the merging procedure for raster map. 
p.v.in.partition Finished the partitioning processing for vector map. 
p.v.out.merge Accomplished the merging procedure for vector map. 

Initialize

END

Sending the processing instruction

InputMap=rast

Invoking 
“p.r.partion”

NY

Invoking 
“p.v.partion”

Invoking “RunModuelInOneUser.sh”

Receiving the accomplished instruction

InputMap=rast

Invoking 
“p.r.merge”

Invoking 
“p.v.merge”

NY

Deconstruction and so on

Invoking the processing module

Receiving  processing instruction

Sending accomplished instruction

Slave Nodes

Master Nodes  
 

Fig. 2. Flow chart of MUDPP development. The universal module invokes the partitioning and 
merging modules with MPI under the fundamental GRASS GIS environment.  



610 F. Huang et al. 

Fig.2 illustrates the development of MUDPP, which invokes the fundamental mod-
ules of GRASS GIS, and MPI.  

4   GIServices Encapsulation Mode and Invoking Flow in SIG 

Through these patterns, the parallel executing programs of GRASS modules are 
available in cluster. Utilizing relevant tools, we can wrap the parallel modules into 
high-performance GIServices under the encapsulation mode.   

4.1   High-Performance GIServices Encapsulation Mode 

As those parallel programs are running in Linux cluster, and still need the support of 
GRASS fundamental environment, all of those make its encapsulation become more 
different than that of RS PFS. Integrating with the existing SIG platform, 4 steps are 
summed up (Fig. 3):   

Step 1. Extracted some executed parallel program (C programs) from GIS package. 
Those programs can reconstructed by the patterns mentioned above; 

Step 2. Those executed programs need be encapsulated to .class files with help of 
Java JNI (Java Native Interface). When the java program can be run successfully in 
local, it indicates the service entity is implemented successfully;  

Step 3. Publish the service entities (Java class files) to SIG services with Tomcat. 
As the result, the WSDL (Web Services Description Language) file will be produced; 

Step 4. The published high-performance GIServices should be registered to the 
SIG MC Node with corresponding tools. 

 

 

  Internet 

 
 

Fig. 3. The high-performance GIServices encapsulation mode. The details for each step are 
illustrated under the figure. 



Study on Implementation of High-Performance GIServices in Spatial Information Grid 611 

4.2   High-Performance GIServices Invoking Flow in SIG 

When the published GIServices is needed, the user should select the corresponding 
data for processing located in SIG. After the processing accomplished, the results can 
be either viewed online or downloaded to the user’s computer. Fig. 4 instantiates the 
whole work flow of the services invoked in SIG platform in detail. 

 
 

Fig. 4. Invoking workflow of the published high-performance GIServices in SIG. Follow the 
figure, some explanations for the invoked steps are listed.  

5   Analyzing of the High-Performance GIServices Efficiency 

There is also requirement to use one suitable way to validate the efficiency of the 
high-performance GIServices through those parallelization patterns. It seems to be the 
best method to contract the high-performance GIServices with the corresponding 
normal GIServices directly under identical conditions. In fact, the sequential GISer-
vices may be developed from some commercial GIS packages, which has different 
computing efficiency from GRASS GIS. Moreover, some uncertain factors such as 
the state of the network etc. may exist in the respective services procedure. Those 
factors must be considered to evaluate the services efficiency. Thus, we propose the 
following formula to ascertain the services efficiency. 

_ _ sin Re _GIServices Data Acquision Data Proces g Communication sult Dowload OthersT T T T T T= + + + +   (1) 

Here, GIServicesT  represents the sum elapsed time of the whole services;  

_Data AcquisionT is the consuming time of the data acquisition, by means of downloading 

or sharing; _ sinData Proces gT means the processing time of the program with the same 

datasets in one some computing platform; CommunicationT is the communication time 

related to network; Re _sult DowloadT indicates the time for user to download the results;  

 



612 F. Huang et al. 

while the last part OthersT is the elapsed time for the remainder except the parts men-

tioned. The equation illustrates the consuming time of the GIServices in the dynamic 
environment, which can be used to represent the efficiency of GIServices indirectly. 

When we suppose those 2 kinds of GIServices are in same conditions, namely, all 

of items expect _ sinData Proces gT  have the identical values in (1). Therefore, the whole 

services efficiency depends on _ sinData Proces gT , i.e., we can use it to represent the 

corresponding GIServices efficiency. 
In order to illustrate the excellent efficiency of high-performance GIServices, we 

select the sequential and parallel programs developed both from GRASS GIS, which 
can avoid the computing capability differences result from different GIS packages. 

Table 2 shows the value of _ sinData Proces gT  in r.example and r.contour in the form of 

sequential and parallel respectively. 

Table 2. The approximate consuming time(s) of r.example and r.contour in sequential and 
parallel forms under different processors in the same computing platform  

Number of the processors  Module name 
1 2 4 6 8 10 12 20 

r.example 158 / / / / / / / 
p.universal/r.example / 129 119 91 101 105 106 115 
r.contour 148 / / / / / / / 
p.universal/ r.contour / 157 63 45 38 37 34 39 

From the contrast results, we know that the values of _ sinData Proces gT  have much 

difference. When they in the right numbers of processors (>2), the parallel modules 
has a better efficiency than the common modules. Therefore, we can deduce that un-
der the same conditions, including the same dataset, network environment, computing 
platform and so on, the high performance GIServies has a better efficiency than that 
of the common GIServies, especially for the big size of data, whose processing are 
full of computation intensive. 

6   Conclusions 

Much work is still needed to explore efficient approaches to make GRASS GIS algo-
rithms parallel in cluster except the mentioned 3 parallelization patterns. Moreover, 
there is also a requirement to construct more high-performance GIServices based on 
the new architecture with GRASS GIS.  

However, the test examples and analyses to the experimental GIServices have led 
to some useful conclusions: (1) The new architecture is practicable for constructing 
GIServices; (2) The parallelization patterns, especially MUDPP, are suitable for pre-
senting some parallel GIS algorithms in cluster; and (3) The constructed high-
performance GIServices have a better efficiency than the opposite normal GIServices. 



Study on Implementation of High-Performance GIServices in Spatial Information Grid 613 

References 

1. Jin, J.J.: The applications of grids in geosciences [in Chinese], http://support. 
iap.ac.cn/bbs/viewthread.php?tid=176&extra=page%3D1 

2. http://www.863.org.cn 
3. http://www.otitan.com/index.shtml 
4. http://159.226.224.52:8021/showdetail.asp?id=2 
5. http://grass.itc.it/ 
6. http://www-unix.mcs.anl.gov/mpi/mpich 
7. Brawer, S.: Introduction to parallel programming. Academic Press, San Diego (1989) 
8. Wang, F.J.: A Parallel GIS-Remote Sensing System for Environmental Modeling. In: 

IGARSS 1992, pp. 15–17 (1992) 
9. Huang, F., Liu, D.S., Liu, P., et al.: Research On Cluster-Based Parallel GIS with the Ex-

ample of Parallelization on GRASS GIS. In: GCC 2007, pp. 642–649 (2007) 
10. Blazek, R., Neteler, M., Micarelli, R.: The new GRASS 5.1 vector architecture. In: Pro-

ceedings of the Open Source GIS–GRASS user conference 2002 (2002) 


	Study on Implementation of High-Performance GIServices in Spatial Information Grid
	Introduction
	Improved Architecture and Analyses for Implementation
	Improved Architecture
	Analyses for High-Performance GIServices Implementation
	Our Approach

	Reconstructed Parallel GIS Programs Based on GRASS GIS
	Several Parallel Patterns for GRASS GIS
	Working Principle, Generic Mode of MUDPP
	Realization of MUDPP

	GIServices Encapsulation Mode and Invoking Flow in SIG
	High-Performance GIServices Encapsulation Mode
	High-Performance GIServices Invoking Flow in SIG

	Analyzing of the High-Performance GIServices Efficiency
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




