
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 624–631, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Multiresolution Watershed Segmentation
on a Beowulf Network

Syarraieni Ishar1 and Michel Bister2

1Faculty of IT, Multimedia University, 63100 Cyberjaya, Malaysia,
syarraieni.ishar@mmu.edu.my

2Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Malaysia,
mrbister@ieee.org

Abstract. Among the many existing multiresolution algorithms, the scale-space
approach offers the benefits of strong mathematical and biological foundation
and excellent results, but the serious drawback of a heavy computational load.
Parallel implementation of this category of algorithms has never been
attempted. This article presents a first experiment, using the multiresolution
watershed segmentation as algorithm, and an 8-node Beowulf network as
hardware platform. First, the classical approach is followed whereby the image
is divided in several regions that are separately allocated to different nodes.
Each node performs all the calculations for his region, at any level of resolution.
Next, a truly multiresolution approach is followed, allocating the workload to
the processors per resolution levels. Each node is allocated a number of
resolution levels in the scale space, and performs the calculations over the
whole image for the particular resolution levels assigned to it. The
implementation in the latter approach is clearly much more straightforward, and
its performance is also clearly superior. Although the experiments using the
region-wise assignment were only done by splitting up the image in rows, and
not in columns or in quadrants, the difference in the results is so dramatic that
the conclusions can easily be generalized, pointing to the fact that scale space
algorithms should be paralellised per resolution level and not per image region.

1 Introduction

1.1 Scale Space

Over the past few years, multiresolution algorithms have become a dominant
approach in digital image processing, and this for two good reasons: their excellent
results, and their biological motivation. It has indeed been shown that the human
visual system is largely a multiresolution system. The scale space approach is an
alternative to other several approaches that have been suggested: Laplacian pyramids,
filterbanks, wavelets, etc [1].

The scale space approach first develops its theory in the continuous domain, and
adds a scale axis to the spatial axes of the image. For practical applications, the scale
axis has to be sampled, just as the spatial axis is sampled. The whole development of
the theory is aimed at studying the evolution of the image features along scale. This is
termed the "deep structure".

Multiresolution Watershed Segmentation on a Beowulf Network 625

Since an N-dimensional image is extended over an additional dimension (scale), it
is obvious that this approach is both memory- and computational intensive - hence the
greater popularity of sub-sampled alternatives like wavelets. However, the scale space
has much stronger mathematical motivations, as it can theoretically be deduced from
basic assumptions in many different ways, including causality, dimension analysis,
entropy maximization, etc. Also, the correlation between the findings from the scale
space approach and the human front end vision (the uncommitted part of the human
visual system) is striking. Finally, results are impressive. Most of the "classical"
digital image processing techniques (e.g. deblurring, texture analysis, gradient
analysis, optical flow, stereo analysis) have all been implemented using scale space
techniques [2, 4, 5, 8].

Taking into account the heavy demands of any scale space algorithm, it is obvious
that the scale space community would benefit greatly from parallel implementations.
Hence, it is surprising that no parallel implementation of the scale space approach has
been attempted to date. This paper is a first attempt at filling this void. Taking into
account the vast amount of different scale space algorithms, it was necessary to limit
the selection.

1.2 Watershed Segmentation

The basic principle of watershed segmentation is to let the pixels in the image link to
one another, whereby each pixel links to its neighbor with the least gradient
magnitude - hence away from the strongest gradient. This linking scheme defines a
classification, whereby all the pixels linking mutually define one class, or segment. In
practice, the links are propagated from one pixel to another: if pixel A links to pixel
B, and pixel B links to pixel C, then pixel A is linked directly to pixel C. This is
iterated until there are no more changes. Pixels who link to themselves (e.g. pixel X
links to pixel Y, and pixel Y links to pixel X, so after one iteration pixel X links to
itself) are called roots. Roots are numbered, and all pixels are labeled with the number
of the root to which they link.

This algorithm is illustrated in Figure 1. It is called watershed segmentation for the
following reason. If we consider the gradient image as a landscape, with the
magnitude of the gradient as a measure of the elevation of the point, then the
algorithm simulates the flow of rain and the splitting up of the landscape in
watersheds. Several implementations exist, not all following the simple and intuitive
procedure outlined here.

The main problem with watershed segmentation is its inherent over-segmentation:
the smallest local minimum in the gradient produces a new root, hence a new
segment. Many methods have been proposed in the literature to deal with this
problem, including the low-pass filtering of the image to reduce the noise and hence
the number of local minima in the gradient image. The question is then: how much
filtering should be applied? The scale space approach gives an elegant answer to this
question by relating the results obtained at different levels of resolution.

626 S. Ishar and M. Bister

Fig. 1. Watershed algorithm of a bacteria image. Left: linking scheme (pixels link toward
smallest gradient). Right: roots are marked by the letter ’x’, and dark lines show the border of
the segments.

1.3 Scale Space Watershed

Let us imagine an image blurred with two different levels of blurring, �1 and �2. Each
image is segmented independently using the watershed algorithm. The segmentation
using �1 is blurred just enough to have sufficiently smooth borders but too many
segments, while the segmentation using �2 is too blurred for the borders (the borders
have shifted) but just enough to avoid over-segmentation. The purpose would be to
have the segments as defined in the �2 image but with the borders as determined in the
� 1 image. The problem is to trace the borders of the segments from the higher level in
the scale space (associated with �2) to a lower level (associated with �1). As tracing
the borders of a segment corresponds to tracing the segment, the maximum overlap
algorithm, as illustrated in Figure 2, is used as the solution.

The segments at level �1 are named Si, 0 � i < Ns1, and the segments at level �2 are
named Tj, 0 � j < Ns2. Then, the amount of overlap V(Si, Tj) is equal to the number of
pixels that belong both to segment Si at level �1 and to segment Tj at level �2. Segment
Si is linked to segment Tj if and only if V(Si, Tj) > V(Si, Tk) � k � j. Finally, all
segments at level �1 that link to the same segment at level �2 are merged, resulting in
a number of segments equal to the Ns2 but with segment borders defined at level �1.

This procedure can be propagated throughout the scale space, as in a loop, so as to
have segments defined at any level of scale with borders defined at another level of
scale. This is the algorithm that we want to implement here. Hence, several steps have
to be considered: blurring, gradient calculation, watershed segmentation, and
merging. Actually, we want to leave the merging as a parameter to the user, so we
want to generate the structure of segment linking from one level to another.

Multiresolution Watershed Segmentation on a Beowulf Network 627

Fig. 2. Scale space merging algorithm. From left to right: gray scale input image; result of
segmentation on level �1 – segment borders accurate, but over-segmentation; result of
segmentation on level �2 – reduced over-segmentation, but segment borders inaccurate due to
blurring; overlap table between the two segmentations; resulting of assigning to each segment
at level �1 the value of the segment at level �2 with which it has the highest overlap.

1.4 Beowulf Networks

The Beowulf system provides a low-cost high-performance parallel computing
environment. This system is ideal for loosely coupled parallel processing which
involves a set of independent processors, each with its local memory, typically with
their own copy of the OS, working in parallel to solve a problem. The system consists
of one server node interconnected with clients via a high-speed network, allowing
each processor to work on its own data [9].

Beowulf cluster is used to run the SPMD (Single Program Multiple Data)
algorithm using either of the two following popular libraries: Message Passing
Interface (MPI) or Parallel Virtual Machine (PVM) [10]. MPI is a popular message
passing interface used in numerous homogeneous hardware environments ranging
from distributed memory parallel machines to networks of workstations [3, 7, 10].

2 Implementation

In our parallel implementation of the scale space watershed algorithm, we use a
Beowulf cluster consisting of 4 Dual Processors Intel Pentium III 800MHz
workstations (1 master and 7 slaves) with 512Mb, 20.4Gb, running RedHat Linux 7.0
operating systems. These workstations are interconnected via a Myrinet switch.

2.1 Region-Wise Implementation

There are several parallel processing approaches for image data such as segment
processing, frame processing, column-wise processing, row-wise processing, etc. For
solving the parallel watershed problem, the row-wise approach was first implemented.
Distribution of the working area over the processors or slaves is based on the number
of rows in the input image. Each slave works on a sub-image for the watershed
segmentation for all scale levels.

Determining of links only requires the sharing of one row of pixels along the
border of the sub-region. Hence this poses no problems. Likewise, the numbering of

628 S. Ishar and M. Bister

the roots can be done easily, with just a little precaution to make sure that each sub-
region gets unique root numbers.

The real problem comes from the link following part of the algorithm. Several
possible situations are illustrated in Figure 3, where an 8x6 image was divided among
3 slaves. A first linking list is without problem: link(A) = B, link(B) = C, so the
instruction link(A) = link(link(A)) results in link(A) = C, after which iterations stop
because link(link(A)) == link(A). All of this can be done within the region assigned to
slave 1. The second case (pixels D-E-F-G) illustrates the need for message passing
between processors: but F is outside the region assigned to slave 1, so slave 1 needs
information from slave 2 to continue following the list and put link(D) to G. One
could consider letting each slave first iterate until no further changes within its
assigned region, and then exchange all the link information from the border pixels. In
this case, slave 1 would already know that link(D) = F and slave 2 know that link(F) =
G, so passing this information to slave 1 would allow this one to put link(D) equal to
G.

Further problems are illustrated in the third case: repeated crossing of the border
line (from H to Q…) or linking between regions that are not even adjacent (from R to
W…), which illustrate that 1) just linking within each region and then sharing border
information is not enough; 2) sharing information once between adjacent regions is
not enough - repeated sharing OR sharing between all regions is necessary.

Fig. 3. Possible situation encountered when following linked lists of pixels between regions
assigned to different slaves (see text for explanation).

Since the linking algorithm requires updated information of other pixels that are
scattered throughout the image, and not only in the neighboring sub-images, many
message-passing activities would occur. Every slave would communicate to each
other slave to gather other sub-images information. Many synchronization points
would be added for this implementation. To simplify the implementation, instead of
many individual message passing steps, one single centralised message passing step is
implemented: after slaves have completed the watershed segmentation for every level,
they will send their result to master. Once gathered, master will display the findings.

2.2 Scale-Wise Implementation

In a second implementation, the task is distributed among the processors based on the
scale levels. The master will first calculate the number of scale levels based on the

Slave 1

Slave 2

Slave 3

Multiresolution Watershed Segmentation on a Beowulf Network 629

following formula and distribute the range of scale levels to all slaves as in Figure 4
[4]:

Scale level (��� = log(Number of extrema in input image)/2*rate

Each slave will then perform a sequential watershed algorithm. Once the watershed
segmentation is completed for all levels assigned to them, the slaves send their results
to the master. A few synchronization points were added to the code to ensure that the
master receives the correct segmentation level. The master will then display the
watershed segmentations.

Fig. 4. Parallel implementation of the scale space watershed algorithm per level.

3 Results

The two implementations were applied on many different popular test images in
digital image processing, but due to the space constraints, only the results for 8 of
them are reported here: 4 with resolution 512x512 (Airplane, Boat, Crowd, Peppers)
and 4 with resolution 256x256 (Camera, Couple, House, Orca). Thumbnails of these
images are given in Figure 5. For each of these images, the experiments were repeated
4 times for more reliable results.

The average execution time for each of these images and for all three
implementations is recorded: serial (for reference), per row, and per level. From this,
the average speedup factor was determined using the formula: Speedup S(n) =
Execution Time (1 processor) / Execution Time(n processors) = ts/tp [10]. All the
results are shown in Figure 6.

Fig. 5. Thumbnail of 8 test images used in the experiments.

630 S. Ishar and M. Bister

Fig. 6. Results for each test image in function of number of processors: a) average execution
time; b) average speedup factor.

4 Discussion

From the results it is clear that the implementation by scale levels is much superior to
the implementation by rows. The implementation by rows systematically slows down
the process. This is due to the intensive message-passing during the linking phase of
the watershed algorithm. As was shown previously, at this stage, each processor needs
a lot of interaction with all the other processors. This creates a communication
bottleneck, which only increases with increased number of processors.

On the other hand, the implementation by scale levels systematically speeds up the
process. This is the logical choice, since the watershed is typically performed
independently at each level of the scale space, minimized message passing. As a
result, we have a speedup for the implementation by scale levels, but an actual speed-
down in the implementation by rows.

The performance is strongly dependent on image size and image structure. For
small images, obviously the execution time is shorter, but also the speedup factor for
the implementation by level is higher. For the 512x512 images, the results vary more,
with the lowest to the highest speedup, (speedup of 1.56 (Crowd) to 2.18 (Peppers)
with 8 processors). Regardless the image size, the highest speedup is the Orca (factor
3.06). It is tempting to explain this by the lower complexity of the Orca image (large
homogenous regions) and the high complexity of Airplane and Crowd images.

Multiresolution Watershed Segmentation on a Beowulf Network 631

5 Conclusion

The large number of tests performed and the consistency of the results are enough to
show that the parallellisation of the scale space watershed algorithm should be done
by level and not by row. The reason for the failure of implementation by rows is the
intense message-passing required during the linking phase of the watershed algorithm.
Any other region-wise implementation (by quadrant, by column, etc) would face the
same problem.
 On the other hand, the implementation by resolution levels is coarsely grained
because the processing is done independently per resolution level. As the number of
processors increases, fewer and fewer levels are assigned per processor. The speedup
curve levels off as one approaches one level per processor - beyond this limit, it is
clear that no additional speedup could be expected any more. Particularly for the
smaller images, with a smaller number of levels, the leveling of the speedup curve is
clearly visible.
 Since many deep structure algorithms work independently on individual levels or
on pairs of levels, similar performance would be expected, and the logical choice
would definitely be the implementation of scale space algorithms by levels of
resolution.

References

1. Bister M, Cornelis J, Rosenfeld A, A critical view on pyramid segmentation algorithms.
Pattern Recognition Letters, Vol. 11, pp. 605–617, 1990.

2. Florack, L.M.J. Image Structure. Computational Imaging and Vision Series. Kluwer
Academic Publishers, Dordrecht. (1997)

3. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir,
M.: MPI- The Complete Reference: Volume 2, The MPI Extensions. The MIT Press,
Cambridge London. (1998)

4. Romeny, B.M. ter Haar (ed): Front-End Vision and Multiscale Image Analysis. Kluwer
Academic Publishers, Dordrecht. (2003)

5. Romeny, B.M. ter Haar (ed): Geometry-Driven Diffussion in Computer Vision. Kluwer
Academic Publishers, Dordrecht. (1994)

6. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Complete
Reference: Volume 1, The Core. 2nd edn. The MIT Press, Cambridge London. (1998)

7. Sporing, J., Nielsen, M., Florack, L., Johansen, P. (eds): Gaussian Scale-Space. Kluwer
Academic Publishers, Dordrecht. (1996)

8. Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F.: How to Build a Beowulf Cluster:
A guide to the Implementation and Application of PC Clusters. The MIT Press,
Cambridge London. (1998)

9. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications using
Networked Workstations and Parallel Computers. Prentice Hall, New Jersey. (1999)

	1 Introduction
	1.1 Scale Space
	1.2 Watershed Segmentation
	1.3 Scale Space Watershed
	1.4 Beowulf Networks

	2 Implementation
	2.1 Region-Wise Implementation
	2.2 Scale-Wise Implementation

	3 Results
	4 Discussion
	5 Conclusion
	References

