
AN ARCIDTECTURE FOR PROVIDING
ADVANCED TELECOMMUNICATION
SERVICES

Y ann Duponchel, Marcel Graf, Hong Linh Truong
IBM Research
Zurich Research Laboratory
8803 Riischlikon
Switzerland

Abstract We describe a novel service architecture that allows service providers
to deploy and provision telecommunications services in an easy and
efficient way. In contrast to today's Intelligent Network (IN)
specification, the new architecture includes mechanisms for the
automatic deployment, modification, and provisioning of services. It
exploits the convergence towards IP as the universal network
infrastructure to provide means for combining both Web and telephony
services into more sophisticated and advanced ones.

Keywords: IN, Intelligent Network, IP Telephony, Service creation, Service provi-
sioning, Communications services

1 INTRODUCTION

To accommodate the explosive growth of Internet traffic, network opera-
tors are building a high-capacity IP infrastructure, and there is no doubt that
telephony will be just another application running on the same infrastructure.
The cost advantage of managing and maintaining a single network infrastruc-
ture for all types of traffic is particularly important for newcomers, but less so
for incumbent operators. Furthermore, using a single infrastructure will make
it easier to combine telephony with Web-based services, thus creating new
kinds of advanced and sophisticated services that have not been possible in
the past or are difficult to implement on separate infrastructures. Such
advanced services are in general thought to be the new income sources for
which the service providers are desperately looking.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. R. van As (ed.), Telecommunication Network Intelligence

10.1007/978-0-387-35522-1_37

http://dx.doi.org/10.1007/978-0-387-35522-1_37

38

Before discussing how advanced services can best be created and
deployed in an IP environment, let us review the basic architecture of an IP
telephony service. Such an architecture is illustrated in Figure 1. Although it
is based on ITU-T recommendation H.323 [1],[2], it can easily be shown that
it also applies - with minor modifications - to other architectures that
employ, for example, the IETF protocols SIP [3] or Megaco [4]. The most
important difference between IP and legacy telephony architectures (e.g.
PSTN, ISDN) is that the former does not require dedicated voice switches,
because both signalling control information and voice signals use IP as com-
munication means. Voice signals are sent directly between terminals, reusing
the same IP router infrastructure as for the exchange of signalling informa-
tion.

Figure 1:

H.323 Gatekeeper
H.323 Gatekeeper

........

IP Network

, ,
, ,

, ,

-- .. Signalling (control) information

... .. Voice signals

H.323-based IP telephony.

Endpoint

The gatekeepers shown in Figure 1 perform only control functions such as
registration, access and admission control, address translation, etc. [2]. They
have no voice switching capabilities and can therefore be implemented in
software as applications servers.

Recommendation H.323 defines two methods to exchange signalling
information, i.e. the information for controlling telephone calls:

39

1. Direct method: The signalling information needed for the control of
a telephone call is exchanged directly between the endpoints
involved. The endpoints may, however, need the assistance of a
gatekeeper (or some other servers) for functions such as address res-
olution, access control, bandwidth management, etc.

2. Gatekeeper-routed method: In this case the terminals "talk" only to
their gatekeeper, which now has control over the telephone call. The
signalling information is exchanged between the terminals and their
gatekeepers. The gatekeeper performs almost the same control func-
tions as the legacy telephony switches, except that they do not switch
voice signals.

In the context of service creation it is reasonable to foresee that such sup-
plementary services as call forwarding or call transfer will be implemented
directly in the endpoints rather than in the gatekeepers by exploiting the intel-
ligence of the endpoints and the end-to-end capability of the direct method
mentioned above. However the gatekeeper-routed method remains of interest
to the service providers, not only because it gives them a control point for the
telephone calls, but also because it enables them to offer more sophisticated
services, e.g. by combining telephony with other Web-based information ser-
vices. An example of such a combination is the stock alert service: the service
subscriber is alerted, i.e. receives a phone call on any of his telephone sets
(home, office, cellular, etc.), if the price of certain stocks crosses certain lim-
its.

An incumbent telecommunications service provider, which already has a
service creation infrastructure based on the Intelligent Network (IN) architec-
ture [5], would certainly look for possibilities to reuse its existing IN infra-
structure. Such a possibility is shown in Figure 2. The gatekeepers are
considered Service Switching Points (SSPs), which means they intercept tele-
phone calls and recognize when it is necessary to contact a Service Control
Point (SCP) for further instructions on how to proceed with a call. The only
difference between a gatekeeper and an authentic SSP is that the gatekeeper
performs only call control, whereas a conventional SSP performs both call
control and voice switching.

Although the architecture shown in Figure 2 allows incumbent telecom-
munications service providers to reuse their expensive SCP-based service
creation infrastructure to extend the offering of traditional supplementary ser-
vices to IP telephony users, it limits the range of offerable supplementary ser-
vices to the capabilities of current SCPs and SSPs.

Another disadvantage of reusing the IN architecture is its lack of opera-
tion and management standardization: The IN architecture standardizes only
the communication protocols between the SCPs and SSPs; it does not specify
the mechanisms needed to "put" the service logics into the SCPs, to manage

40

., . .
•. ' " H.323 Gatekeeper II! (SSP)

Gatekeeper II! •...... "•
4 \.
, .

. . . , a a
H.323 Terminal H.323

Figure 2:

-- .. Signalling (control) information

.... • Voice signals

Applying IN architecture to IP telephony.

Terminal

and customize them, and to set the required service triggers in the SSPs (e.g.
recognizing the access prefix of a service). This lack of specification leads to
incompatible and vendor-specific SCP/SSP platforms. Typically, a rapid
deployment of services is only possible within a single vendor environment.
Furthermore, it is not possible to port a service logic written for a specific
platform to another, thus making it almost impossible to deploy and manage a
service across multiple vendors' platforms.

In this paper we present a novel architecture that allows service providers
to deploy and provision advanced telecommunications services in an easy
and efficient way. In contrast to the IN architecture described above, the new
architecture includes mechanisms for automatic deployment, modifications
and provisioning of services. It provides to the service providers an easy and
efficient means for injecting new service logics into the network and modify-

41

ing them. It also allows service subscribers to directly customize their service
profiles. Besides being very resistant to failure of single components, the
architecture is also scalable in terms of number of users, calls and services.

We have organized the paper as follows. In the next section we discuss
some service concepts that are important for understanding our architecture.
The new service architecture is then presented in Section 3, with a detailed
description of the components and their interactions. Section 4 shows how a
concrete IP telephony service based on the ITU-T Recommendation H.323
could be integrated into the architecture.

2 CORE AND ADVANCED SERVICES

In our architecture we differentiate between what we call core and
advanced services. Core services are services used as common building
blocks to create advanced services. Examples of core services are

• telephony service,
• e-mail,
• short message service (SMS)l,
• instant messaging (1M), and
• presence.

Presence and instant messaging [6] is a new mode of communication that
has recently become very popular in the Internet. Presence is a service that
allows user A to declare its interest in the presence states of another user B,
e.g. whether user B is currently connected to the network and, if so, whether
user B is actively using his terminal, etc. This service is typically imple-
mented by an application running on the terminal of user B, which publishes
presence information about user B; the service delivers notifications to all
users subscribed to observing each time the presence state of user B changes.
Knowing the state of user B, user A may then start an instant messaging ses-
sion with user B in which both users exchange short instant messages. An
instant messaging session is very similar to a telephone call in the sense that
it is synchronous (instant), i.e. messages sent by a user are delivered almost
immediately to the peer user.

Although both presence and instant messaging are currently offered in the
Internet as a combined service (e.g. AOL 1M, Yahoo! Messenger) we regard
them in our architecture as two separate core services that can be used inde-
pendently to create new advanced services.

1. In the GSM mobile network, this service allows a cellular user to send a short text message
to another cellular user.

42

An interesting observation is that most of today's telephony systems
already collect presence information about their users, but do not offer it as
an explicit service to their users. The PSTN, for example, monitors the status
of a telephone line of a subscriber and determines whether it is busy or free.
The fact of a telephone line going from a busy state to a not-busy state is a
piece of presence information. Some systems make use of that information to
offer so-called "call completion" supplementary services [7], in which a call-
ing user for example can request the network to monitor a busy called user
and connect him to that user as soon as he becomes not busy. Another exam-
ple is the mobile telephone network, which foresees a procedure for mobile
phones to register with the network before they can make and receive calls.
The network keeps track of the registration status. The fact that a mobile tele-
phone is registered is again a piece of presence information. It is interesting
because it indicates that there is a high likelihood that the user is able to
accept a call. A similar registration procedure also exits in IP telephony.

In our architecture we propose that all these different pieces of presence
information be integrated into a single service available to all other ones.
Based on such a converged presence service, the presence information is no
longer restricted to a specific application: a user is no longer available with
instant messaging or available with telephony but rather available at a cer-
tain terminal. In this way we can exploit the multiservice capability of mod-
em communications terminals, e.g. a mobile phone that is capable of
receiving telephone calls, SMS messages, and in the near future also instant
messages.

Regarding the telephony core service mentioned above, it should be noted
that in our architecture we do not differentiate between the different types of
network technology that can offer telephony services: i.e., there is only one
telephony core service, which includes the PSTN, ISDN, cellular networks,
IP telephony networks, etc.

As mentioned, taking the core services as common building blocks, one
can create advanced services by

• either modifying the way a core service is invoked, e.g. call forward-
ing, call completion. In the legacy telephony world such advanced
services are called "supplementary services";

• or combining several core services to provide more sophisticated
ones. We call such advanced services "hybrid services".

Of course an advanced service may be both supplementary and hybrid.
Our notion of hybrid services is different from the one defined in [8], in

which it is defined as "services which span many network technologies, such
as the public switched telephony network (PSTN), cellular networks, and net-
works based on IP". According to this definition, the telephony core service
we mentioned above would already be a hybrid one.

43

3 THE NEW SERVICE ARCHITECTURE

The main aim of our architecture is to define an environment that will
allow a rapid and efficient creation and deployment of advanced services.

In designing the service architecture emphasis was placed on the follow-
ing key aspects. First, it should provide the service provider with an easy and
efficient means to deploy new service logics into the network and to modify
them. Second, it should allow service subscribers to customize their profiles
themselves (e.g. via the Web and not with the help of a call center agent) and
have the changes propagated rapidly into the network. Third, it should be
applicable to the creation of hybrid advanced services as defined in Section 2,
and not restricted to supplementary services. And last but not least, it should
be scalable to large numbers of subscribers and services, and resistant to
components failures.

Provisioning
Function ., ••

NaSS

Subscription •
Function . .

Service Node

• •.•... Service Node I

..... .J Service Node I

. .

Service Node

Figure 3: New service execution architecture.

44

The proposed service architecture is shown in Figure 3. It consists of the
following components:

• Notification and Synchronization Service (NaSS),
• Provisioning Function,
• Subscription Function,
• Core Services,
• Service Agents,
• Agent Initiators, and
• Service Nodes.

We will first give a short overview on the functions of these components
and their interactions. The follow-on subsections will then contain a more
detailed description.

3.1 OVERVIEW

Typically there are four phases during the life cycle of a service [9]: cre-
ation, provision, subscription, and utilization.

During the creation phase, first the service is specified and designed, usu-
ally derived from a textual description, then the required service logics are
developed, coded, verified and tested. Various formal languages such as SDL
(Specification and Description Language) or LOTOS [to] can be of help dur-
ing the specification and design steps. To simplify the coding tasks visual
tools combined with reusable components such as the IN's concept of ser-
vice-independent blocks (SIBs) or the object-oriented Java Beans can be
used. The creation phase is, however, beyond the scope of our architecture,
and for the remaining part of this paper, we assumed the existence of the ser-
vice logics. Such service logics are named in our architecture Service Agents.

Having the service agents, the service provider now needs to distribute
them to the Service Nodes, in which they will be loaded and executed during
the service utilization phase. To be scalable our architecture supports the
existence of multiple service nodes, which mayor may not have the same
functionality.

The Provisioning Function shown in Figure 3 helps the service provider
to inject the service agents into the appropriate service nodes using the com-
munication mechanisms of the so-called Notification and Synchronization
Service (NaSS). As will be described in more details in Section 3.2, the NaSS
provides to all other components of the architecture an interprocess commu-
nication mechanism that is based on an anonymous publication and subscrip-
tion paradigm. That means, a publisher does not need to know who will

45

receive his notification, he just publishes it under a certain name; the NaSS
will then deliver the notification to the components that have subscribed to
that name.

In our example, with the help of the provisioning function the service pro-
vider publishes the service agents into the NaSS, without the need for know-
ing anything about the characteristics of the available service nodes. The
NaSS will then deliver them to the service nodes that have subscribed for
those service agents. This procedure will be described in more detail in
Section 3.6.

Similar to the provisioning function, the Subscription Function in
Figure 3 allows a service user to subscribe and customize his service profile
himself (e.g. using the Web) and publishes the resulting data into the NaSS.
The NaSS will then deliver those data to the service agents that have sub-
scribed for those data.

As mentioned, service agents execute the logic that is required to imple-
ment a certain advanced service. For this purpose they typically wait for an
event coming from a Core Service, at which they then interact with that core
service and/or with additional ones. For example, a service agent implement-
ing the supplementary service "Call Forwarding on No Reply" (CFNR) [11]
only becomes active if there is an incoming call to the subscriber. At this
event (which is generated by the telephony core service) the service agent
starts the no-reply timer and watches the state of the call. It does nothing if
the call is answered, otherwise at the expiration of the no-reply timer, it dis-
connects the ringing connection and redirects the call towards the diverted-to
number.

To make the. service node scalable in large numbers of active service
agents, we define in our architecture the concept of an Agent Initiator, which
watches the events on behalf of the service agents. At the occurrence of an
event the agent initiator will load into memory those agents that are interested
in the event and start them. It is also the responsibility of the agent initiator to
remove an agent from the node's memory after that agent has done its job.
The concept of the agent initiator is explained in more detail in Section 3.4.

3.2 NOTIFICATION AND SYNCHRONIZATION
SERVICE (NASS)

The heart of our architecture is the Notification and Synchronization Ser-
vice (NaSS), which provides an interprocess communication mechanism to
all the other components. As illustrated in Figure 4 there are two kinds of
NaSS users: (1) NaSS Publishers, which send notifications to the NaSS, and
(2) NaSS Subscribers, which receive notifications from the NaSS. The main

46

function of the NaSS is to deliver the notifications and attached objects sent
by publishers to the corresponding subscribers. The association between pub-
lishers and subscribers is performed by means of a Name.

l PUblisherJ I NaSS I I Subscriber II Subscriber II Subscriber I
subscribe{n me)

-
su - pscribe{name) -

sub" cribe{name) --
notify {name, [objects]) .. notify{name [objects])

notify{na ne, -

notify {nam [objects]) ..

Figure 4: Notification and Synchronization Service (NaSS).

NaSS names have a hierarchical structure. This enables a subscriber to use
wildcards to refer to an entire subtree of the hierarchy and thus to subscribe to
several names with a single subscription.

Communication via the NaSS is anonymous, because to receive a notifica-
tion sent by a certain publisher, a subscriber needs only know the name under
which the publisher sends the notification (and not the publisher itself). The
publisher also does not know who will receive its notification. Both publisher
and subscriber do not even have to know whether the peer they want to com-
municate exists yet.

If there are no subscribers at the time of publication, the notification will
be remembered by the NaSS for later delivery to new subscribers. Several
publishers may publish notifications under the same name. All of them are
delivered to the subscribers, if any. However, the NaSS remembers only the
last notification, i.e. a new subscriber will receive only the last stored notifi-
cation.

The above property and the anonymous communication are particularly
important for the subscription phase of a service, in which a service sub-
scriber modifies its profile and publishes the new data into the system using
the Subscription Function (see Figure 3). This data is needed by a service

47

agent activated, for example, when the subscriber is involved in a telephone
call. The anonymous communication property allows the subscription func-
tion to inject the data into the system without the need to know which agents
will get it and on which nodes they will run. The memory property (remem-
bering the last notification) allows the service agents to always get the most
up-to-date data.

The NaSS service is both synchronous and asynchronous. It is synchro-
nous because it guarantees the latency with which notifications are delivered
to subscribers. At at the same time it is an asynchronous service because it
remembers the last notification and delivers it to a new subscriber.

In general, all components communicate with each other using the NaSS
publication and subscription communication mechanism, without the need to
know the identity and location of the peer component. The NaSS is also used
for local communication. This permits the network operator to place any
component anywhere in the network without the need for complicated con-
figuration work.

The NaSS concept of anonymous and asynchronous communication
described above is actually not a novel concept. It has its root already back in
the 1980's in the field of parallel computing [12] and has recently become
again an interesting research area in the field of Java-based distributed com-
puting and mobile agents [13],[14]. New is however our proposal for apply-
ing this concept to the field of telecommunication service deployment and
execution and its extension from an asynchronous messaging system to a syn-
chronous one to fulfill the real-time requirement of telecommunications ser-
vices.

3.3 CORE SERVICES

As mentioned in Section 2, Core Services are the building blocks for cre-
ating new and sophisticated advanced services. In our architecture there are
two ways the other components can access the functionality of a core service:

1. Through the NaSS
In this case the core service can be accessed by all components, inde-
pendent of their location.

2. Directly
In this case the core service is primarily accessible by components
residing on the same service node (the concept of a service node is
defined in Section 3.5). It may not be available to components resid-
ing on other service nodes.

48

The direct access type has the advantage of better performance in those
cases where interaction with the core service requires an intensive exchange
of notifications. If the component accessing the core service resided on a dif-
ferent service node, the resulting high network communication overhead
would impose a significant performance penalty. An example of a core ser-
vice that would need direct access is a call-control service using the Java
Telephony API [15], which has a very detailed call model. In JTAPI, a tele-
phone call is represented as a set of fmite state machines that undergo state
transitions. Each state transition is delivered using the "Event Object" pattern
[16] to the service logic. The number of events generated by a call is very
high when compared, for example, to the IN call model. Thus, a component
that wants to control a call offered by a JT API interface needs be colocated
with that JT API.

Providing access to a core service does not mean that a platform conform-
ing to our architecture also has to implement that core service. If the core ser-
vice is already provided by another system, then of course the platform will
not implement that core service again but only provides the means to access
and control it. For example, in the case of the telephony core service the plat-
form will not implement the telephony service again, but merely provides the
means for controlling telephone calls to its components. The telephony ser-
vice itself is implemented elsewhere, e.g. by the PSTN, by a cellular system,
or by IP telephony system.

3.4 AGENT INITIATORS AND SERVICE AGENTS

The main function of a Service Agent is to execute the logic that is specific
to a certain advanced service. Service agents are designed and created by the
service creator. In general several service agents are needed to implement one
advanced service. The architecture does not assume any specific relation
between a service agent and the phases of the service life cycle, i.e. during a
certain service phase, multiple service agents may be executed in parallel,
and an service agent may also cover multiple phases. The architecture also
neglects the interactions that may arise between various service agents. It is
the responsibility of the service creation to resolve the feature interaction
problems [17] during the service specification and design phases.

Typically a service agent is in passive mode most of the time. It becomes
active only at the occurrence of a certain event (e.g. an incoming call), exe-
cutes the required actions, and returns to the passive mode. Because there
may be a large number of service agents that need to listen for their triggering
event, they all would have to be loaded into memory all the time, independent
of whether they are passive or active.

49

To be scalable in a large number of service agents, we introduce in our
architecture the concept of an Agent Initiator that listens for the relevant
events on behalf of the service agents. At the occurrence of an event, the
agent initiator loads the corresponding service agents into memory and ini-
tiates them. Once initiated, a service agent runs on its own, i.e. it interacts
directly with the other components, without any help from the Agent Initia-
tor. In addition, the agent initiator is responsible for unloading the service
agents from memory when they have done their job and return to the passive
mode.

The agent initiator needs the following information to be able to load and
initiate a service agent:

1. The events at which the agent initiator has to load and initiate the
agent;

2. the code to be loaded (this is the code that implements the logic to be
executed by the agent once it becomes active);

3. the data objects needed by the agent to do its job, and
4. the core services the service agent needs to access to do its job, e.g.

telephony core service. This information is important for core ser-
vices that are accessible only directly.

Thus when creating the service agents the service creator not only needs
to create the code of the agents, but also provide a so-called Service Agent
Descriptor that describes these four pieces of information to the agent initia-
tor. As in our architecture all information exchange is performed via the
NaSS, a service agent descriptor contains the NaSS names under which the
agent initiator has to subscribe to obtain the information required:

• Event names: the NaSS names of the events that will trigger the initi-
ation of the agent;

• Code names: the NaSS names under which the agent code can be
retrieved;

• Data names: the NaSS names under which the data objects needed
by the agent can be retrieved, and

• Core services names: the NaSS names of the core services needed by
the agent.

During the provisioning phase the service agents' codes and their descrip-
tors are made available to the agent initiators by publishing them in the NaSS.
As a consequence, at service node start-up time, the agent initiator subscribes
to the NaSS for all service agent descriptors in order to get the service agents
made available by the service provider. Section 3.6 provides more details on
the use of NaSS during the provisioning phase of a service.

Upon receiving a service agent descriptor, the agent initiator checks the
core services descriptor to find out whether it is able to support that service
agent (it is assumed that the agent initiator knows the capabilities of the ser-

50

vice node it resides on). If not, the published service agent will be ignored.
Otherwise, the agent initiator subscribes to the NaSS or a core service inter-
face (e.g. in the case of JTAPI) for the events specified in the service agent's
event descriptor.

Upon occurrence of one of the events described in the service agent's
event descriptor, the agent initiator

• subscribes to the NaSS to get the agent code (if this has not already
been done);

• subscribes to the NaSS to get the data objects specified by the ser-
vice agent's data descriptor, and

• starts the service agent's code with the data objects it gets from the
NaSS.

As the NaSS functionality is available to all components of the architec-
ture, the service agents can also access the NaSS directly to get the informa-
tion they need to do their jobs rather than getting it from the agent initiator.
Our architecture provides both mechanisms, and it is up to the service creator
to select the one that is most appropriate to his services.

Note that the agent initiator is agnostic about
• the number of service agents a certain advanced service may need. It

is the responsibility of the service creator to define the number of
service agents needed by a service. For example, if the service
requires actions at multiple events, then the service creator may
define multiple agents, one for each of the events. He may also cre-
ate a single one which listens to all events (except the first one,
which is delegated to the agent initiator);

• the number of subscribers involved by a service agent (i.e. the logic
executed by a service agent may be specific for a single subscriber,
but also may be valid for a group of subscribers), and

• the relationship between a service agent and the service life cycle.

3.5 SERVICE NODE

A service node is a functional grouping that contains at least an agent ini-
tiator and is therefore able to initiate service agents. Furthermore it provides
to the components it hosts access to the NaSS for communicating and
exchanging information with other components.

In general, there are multiple service nodes within a system implementing
our architecture. To be scalable in terms of the number of users it can accom-
modate, the processing load generated in the entire system needs to be spread
over several service nodes. There are two possible approaches regarding the
division of the load: by function (task) or by load-generating request. In the

51

case of division by function a node specializes in performing only certain
subtasks. To handle a request several service nodes need to communicate to
coordinate the subtasks. In the case of division by load-generating request, a
service node performs all subtasks for a request. As a request enters the sys-
tem it is assigned to one service node.

The latter approach in general has some advantages over the former
because (1) it has a lower communication overhead, (2) is .more robust
because the load of a failed service node can be taken over by the other ser-
vice nodes, and (3) easier to manage when the system needs to be scaled up
as another service node can be merely be added.

Our architecture allows the implementation of both approaches, even a
combination of them. The concept of agent initiators and service agents,
together with the NaSS communication mechanisms, permits the addition
and removal of advanced services without the need for re-configuring and
restarting the service nodes. New service agents are distributed automatically
to the subscribed service nodes and started there without the need for compli-
cated configuration work. It also allows the addition and removal of service
nodes to distribute load over multiple machines, thus making the architecture
scalable in terms of the numbers of users, calls and services that can be
accommodated. It furthermore adds reliability to the system because a failing
node can easily be replaced by another one.

3.6 PROVISIONING AND SUBSCRIPTION FUNCTIONS

Assuming the existence of the service agents coded as described in
Section 3.4, the provisioning function shown in Figure 3 helps the operator
inject the service agents into the network using the publishing mechanism of
the NaSS (provision phase). For example, the operator can publish the service
agent implementing the CFNR supplementary service [16] using the NaSS
name /serviceagent/descriptor/cfnr. It is the responsibility of the
service creator to choose the name such that it is unique in the system. With
this naming scheme, the Agent Initiator would then have to subscribe to the
name /serviceagent/descriptor /*. The wildcard * is used to refer to
all notifications published using names that start with /serviceagent/

descriptor /. In this way all service agent descriptors published via the
provisioning function will be forwarded by the NaSS to the Agent Initiators.

Certainly, by giving a more complex structure to the NaSS names, spe-
cialized service nodes and agent initiators could be introduced into the net-
work. In this case, these nodes would subscribe only to (and therefore get
only) the agents of the services in which they were interested. This example

52

shows the strength of our architecture: service logics can easily be transferred
to the appropriate network nodes, without the need to know the location and
configuration of the various nodes explicitly.

This also applies to the subscription phase, in which a user can subscribe
to a service and customize his service profile according to his needs. The sub-
scription function in Figure 3, besides interfacing with the user, publishes the
most up-to-date subscriber data into the system. In this way any components
in the system, e.g. service agents, currently subscribed to those data always
get the most recent one from the NaSS.

Although the subscription function is shown in Figure 3 as a component
different from a service node, it can certainly be designed in a very similar
way. This means that it will also contain an agent initiator for initiating ser-
vice agents, which, in this case, will run during the subscription phase and
not, as in the case of the service nodes, during the utilization phase. These
"subscription" agents are also created by the creator and injected into the net-
work using the provision function described above.

4 INTEGRATION OF H.323-BASED TELEPHONY
SERVICE INTO THE ARCHITECTURE

In the preceding sections the inclusion of the telephony core service was
handled in a very generic way, i.e. without specific assumptions on how that
service is actually implemented. Whether it is provided by a legacy PSTN or
an IP-based network was not important.

Figure 5 now shows how the architecture looks if the core telephony ser-
vice is based on H.323. The gatekeeper-routed call model is selected because
we want to provide the service agents running in the service nodes with the
capability of controlling the H.323 calls. The H.323 gatekeeper functions, as
specified in [1], are split into two parts:

1. The H.323 signalling proxy, which mainly handles the signalling
functions of the Q.931 and H.245 protocols and provides the tele-
phony call control services to the other components of the service
node,and

2. the H.323 RAS Server, which covers the functions defined by the
H.225.0 RAS protocol such as address translation, admission con-
trol, etc.

The separation of the gatekeeper functions into a signalling and a RAS
part allows the implementation of a very efficient load distribution mecha-
nism. All service nodes use the NaSS communication mechanism to publish

Provisioning
Function __

L...-__ ---' ""'"

,..------,

Subscription
Function

H.323 Endpoint

. .

NaSS

I Service Node
__ --I

.. • 1 Service Node

. .

Service Node

Service Node

53

Figure 5: Integration of H.323-based telephony service into the architec-
ture.

information about their availability and load situation. Because the communi-
cation via the NaSS is anonymous, they do not know the existence of the
RAS server, and even do not know who will manage their load.

To get the load information of the service nodes, the RAS server responsi-
ble subscribes to NaSS with the name used by the service nodes to publish
their load information. Based on the load information collected, the RAS

54

server is able to construct an overview of the actual load situation of the ser-
vice nodes and can therefore distribute new calls to the most appropriate
nodes. The entire scenario is illustrated in Figure 6, which starts with the
RAS server subscribing to the load notifications sent by the service nodes.
According to Recommendation H.323, an endpoint needs to send an admis-
sion request (ARQ) message to the gatekeeper (in our case to the RAS server)
before it can set up a call. The RAS server will then request the endpoint to
send its Q.931 SETUP to the most appropriate service node. The IP address
of the selected service node is given back to the endpoint via the admission
confirm (ACF) message.

I H.323 end point II RAS server I I NaSS I Service node x II Service node y I
su scribe (load)

'
.. .. notify(loadlSNx [load info)) - -.. - notify(lo dlSNy, [load info)) - -ARQ - ACF(SNy) -

SETUP(...)

Figure 6: Load distribution.

The NaSS capability can furthermore be exploited to implement the H.323
address registration and translation. In H.323 an endpoint may be assigned an
alias that is independent of its transport address. This is important for exam-
ple for endpoints that access the Internet via a dial-up connection with
dynamic IP address assignment. To be nevertheless always reachable under
the same alias, the endpoint has to inform the gatekeeper about its current
transport address using the so-called registration procedure.

Figure 7 illustrates how the H.323 address registration and translation can
be implemented using the NaSS capability. The endpoint informs the gate-
keeper (in our case the RAS server) about its current transport address by
means of a registration request (RRQ) message. Upon receiving an RRQ
from an endpoint, the RAS server publishes the received H.323 alias address
and the corresponding transport address into the NaSS, thus making the trans-
lation immediately available to all components of the system. Any compo-

55

I H.323 end point I RAS server NaSS Service agent I
RRQ(alias=linh, port add=9.4.5.6) -ReF --- notify(alias/linh,[9.4.5.6]) .. -

... subscribe(alias/linh)

--
notify(aliasllinh,[9.4.5 6]) -

Figure 7: H.323 address registration and translation.

nent, e.g. a service agent that needs to set up a call to a certain endpoint, can
retrieve the actual transport address of that endpoint simply by subscribing to
the NaSS for the alias associated with that endpoint. To remove an associa-
tion (e.g. in the case of an unregistration), the RAS server publishes an empty
association, i.e. a notification that contains an H.323 alias but without a corre-
sponding transport address. Note that all H.323 RAS specifics, e.g. time to
live, etc., are implemented in the RAS server, not in the NaSS. The NaSS
stores only the association between an alias and a transport address.

Although the architecture illustrated in Figure 5 was developed based on
the lTU-T H.323 recommendation, it is obvious that it can also apply to the
IETF SIP protocol by replacing the H.323 RAS server and signalling proxy
by a SIP redirect and proxy servers, respectively.

5 CONCLUSION

We have described a novel architecture that allows the rapid and efficient
creation and deployment of sophisticated advanced services. The core com-
ponent of the architecture, the NaSS, provides the service creator with an
easy and efficient means for injecting new service logics into the network and
modifying them. It also allows service subscribers to customize their service
profiles directly. The concept of service agents and agent initiators permits
the addition or removal of services without the need to restart the service
nodes. It also permits the addition and removal of service nodes to distribute
load over multiple machines, thus making the architecture scalable in terms

56

of the number of users, calls and services it can accommodate. The dynamic
task assignment adds reliability to the system because a failing service node
can easily be replaced by another one.

Our future work consists of building a prototype to assess the correctness
of the concepts we have presented in this paper. We are evaluating various
implementations of the NaSS, in particular regarding the fulfillment of the
requirements described in Section 3.2. A performance evaluation of the
architecture using a typical hardware and software platform also remains to
be done. The results of these activities will be communicated in future publi-
cations.

ACKNOWLEDGMENT

The authors are thankful to Lucas Heusler for many insightful discussions
and an in-depth review of the paper. They are also grateful to Asser Tantawi,
Linda Steinmuller, Pnina Vortmann, Samuel Kallner and Igal Golan for use-
ful comments.

References

[1] ITU-T Recommendation H.323, "Packet-based Multimedia
Communications System", Version 2, Oct. 1999

[2] J. Toga and J. Ott, "ITU-T Standardization Activities for Interactive
Multimedia Communications on Packet-based Networks: H.323 and
Related Recommendations", Computer Networks 31, Feb. 1999

[3] H. Schulzrinne and J. Rosenberg, "Internet Telephony: Architecture and
Protocols - an IETF Perspective", Computer Networks 31, Feb. 1999

[4] F. Cuervo et aI., "Megaco Protocol", draft-ietf-megaco-protocol-07.txt,
Feb. 2000

[5] I. Faynberg, L.R. Gabuzda, M.P. Kaplan, and N.J. Shah, "The Intelligent
Network Standards", McGraw Hill, 1997

[6] M. Day, J. Rosenberg, and H. Sugano, "A Model for Presence and Instant
Messaging", RFC 2778, Feb. 2000

[7] ECMA Standard 185, "Call Completion Supplementary Services", Dec.
1992

[8] C. Gbaguidi, J.-P. Hubaux, G. Pacifici, and A.N. Tantawi, "Integration
of Internet and Telecommunications: An Architecture for Hybrid
Services", IEEE JSAC, Vol. 17, No.9, Sept. 1999

[9] ETSI Technical Report ETR323, "Intelligent Network (IN): Service Life
Cycle Reference Model for Services Supported by an IN", Dec. 1996

[10] K.J. Turner (Editor), "Using Formal Description Techniques - An
Introduction to Estelle, LOTOS and SOL", John Wiley & Sons, 1992

57

[11] ECMA Standard 173, "Diversion Supplementary Services", June 1992
[12] S. Ahuja, N. Carriero, and D. Gelernter, "Linda and Friends", Computer,

pp. 26-34, August 1986
[13] E. Freeman, S. Hupfer, K. Arnold, "JavaSpaces(TM) Principles, Patterns

and Practice (The Jini(TM) Technogy Series)", Addison-Wesley,
Reading, 1999

[14] TJ. Lehman, S.W. McLaughry, and P. Wyckoff, ''TSpaces: The Next
Wave", Hawaii Int'l Conf. on System Sciences (HICSS-32), Jan. 1999

[15] "JTAPI Introduction", http://java.sun.comlproductsljtapi/
[16] E. Gamma, R. Helm, R. Johnson, and 1. Vlissides, "Design Patterns:

Elements of Reusable Object-Oriented Software", Addison-Wesley,
Reading, 1995

[17] F.S. Dworak et at., "Feature Interaction Problem in Telecomunication
Systems", Proc. of the 7th Int'l Conf. on Software Engineering for
Telecommunication Switching Systems, pp. 59-62, July 1989,
Bournemouth, UK.

	AN ARCIDTECTURE FOR PROVIDING ADVANCED TELECOMMUNICATION SERVICES
	1 INTRODUCTION
	2 CORE AND ADVANCED SERVICES
	3 THE NEW SERVICE ARCHITECTURE
	3.1 OVERVIEW
	3.2 NOTIFICATION AND SYNCHRONIZATION SERVICE (NASS)
	3.3 CORE SERVICES
	3.4 AGENT INITIATORS AND SERVICE AGENTS
	3.5 SERVICE NODE
	3.6 PROVISIONING AND SUBSCRIPTION FUNCTIONS

	4 INTEGRATION OF H.323-BASED TELEPHONY SERVICE INTO THE ARCHITECTURE
	5 CONCLUSION
	ACKNOWLEDGMENT
	References

