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A b s t r a c t .  The model of the torus as a parallelogram in the plane with 
opposite sides identified enables us to speak of upward drawings of graphs 
in the torus. It is shown that upward embeddings of a toroidal map can 
be obtained in a very natural way by means of flow techniques. 

1 D e f i n i t i o n s  

Given a graph G, let V(G) be the set  of  vertices of G, E(G) the set of edges of 
G. For A, B subsets of V(G), let E(A) be the set of edges of G with both ends 
in A, and let E(A, B) be the set of edges of G with one end in A, the other in 
B. 

A map M on a surface S is a connected graph G toge~..her with a 2-cell 
embedding of G in S. Two maps are equivalent if there is a homeomorphism of 
S mapping  the graph of the first map  onto the graph of the second. It  is well- 
known that  the equivalence classes of maps on orientable surfaces correspond 
natural ly to rotat ion systems on the underlying graphs [5], where a rotation 
system on a graph G is a set of cyclic rotations of edges emanat ing from each 
vertex of G, the local rotations corresponding to the cyclic order of these edges 
on the surface. The rotat ion system around the faces of M defines the dual map  
M*. A map  M and its dual M* can be simultaneously drawn in S such that  
each vertex of M* corresponds to an interior point of the corresponding face of 
M (and vice versa), and such that  precisely dual pairs of edges cross each other. 

From now on we shall assume that  the surface S is the torus. An angle of a 
map  M (respectively, M*) on S is a pair of consecutive arcs at a vertex v of M 
(respectively, a face f of M).  The angle map of M is a map  .4 on S whose vertices 
are the vertices plus the faces of M, and whose edges are the angles of/l~r, each 
angle being incident with the corresponding vertex and face of M [9]. The set 
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of angles incident with a vertex v of M has a local rotation determined by M, 
and the set of angles incident with a face of M inherits the local rotation from 
M*. Note that  the angle map .4 is bipartite and each face of .4 is a quadrangle 
whose diagonals are a pair of dual edges of M and M*. An example is shown in 
Figure l(b)  where the dotted lines represent the edges of M and they are not 
part  of .4. The dual map of .4 is the medial map of M. 
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Fig. 1. A toroidal map and its angle map 

A toroidal map M is essentially 2-connected if for every subset Y of the 
vertices of the angle map ,4 of M we have 

21YI- IE(Y)I > O. (1) 

This property is equivalent to the requirement that the universal cover of M is 
2-connected [6]. Several other characterizations of this property are presented in 
[6]. 

For a given orientation of the edges of a map M, an angle at a vertex v is 
lateral if one of its arcs is incoming and the other is outgoing at v. Otherwise, 
if both arcs of an angle are incoming or both are outgoing at v, then the angle 
is extremal. Having an orientation of edges of a map M, we get an orientation 
of the angle map .4 as follows. Given an angle a incident with a vertex v and a 
face f of M, the angle a as an edge of ,4 is oriented from f to v if a is lateral, 
and from v to f if a is extremal. We say that  an orientation of edges of M has 
the upward properly at v (resp. at f )  if there are exactly two lateral angles at 
v (resp. two extremal angles at f ) .  Equivalently, in the oriented angle map `4, 
the indegree of every vertex (either v or f )  is equal to two (see Figure l(b)). 
Cf. also [7]. An orientation of M, which has the upward property at every vertex 
and every face, is called an upward orientation. By the above remark, an upward 
orientation induces an indegree two orientation of the angle map .4. It is an easy 
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corollary of Euler 's formula that  only maps  on the torus (and on the Klein bott le  
if we allow nonorientable surfaces) may  accept an upward orientation. The  aim 
of this contribution is the construction of upward orientations of a non-oriented 
toroidal map  by means of a flow model. 

Upward orientations are closely related to upward drawings. In order to de- 
fine an upward drawing of a graph G on the torus, we first need a definition 
of a monotone arc. Consider, without loss of generality, the fiat torus that  is 
obtained from a parallelogram Q in the plane whose opposite sides are pairwise 
identified (see Figure 1). The lines parallel to the sides of Q oriented according 
to the usual axes determine horizontal and vertical circuits on the torus. At each 
point of the torus two circuits cross, the vertical one being crossed always by the 
horizontal one, for instance, from left to right. A (polygonal) arc on the torus 
is monotone if it crosses horizontal circles from bo t tom to top. In particular,  
the vertical circuits are examples of monotone arcs. The definition of horizontal 
circles is easily extended to the ease when the horizontal direction is not neces- 
sarily parallel to a side of Q. Monotone arcs are defined accordingly. An upward 
drawing of a toroidal map  M is a map  equivalent to M drawn on the torus with 
monotone  (polygonal) arcs and at each vertex v of M at least one edge incident 
to v enters v from below (with respect to the chosen horizontal direction) and 
at least one edge enters v from above (see Figure l(a)).  Obviously, an upward 
drawing defines an upward orientation of M.  

2 A f l o w  m o d e l  f o r  u p w a r d  o r i e n t a t i o n s  

An upward distribution of a toroidal map  M is a particular parti t ion of its angles. 
It  can be defined as a labelling by O's or l ' s  of the angles of M such that  there 
are exactly two l ' s  at each vertex and exactly two O's at each face. It  is obvious 
that  an upward orientation of M induces an upward distribution of M.  However, 
the converse is not true. On the other hand, there is an easy algorithm to check 
whether a given upward distribution is induced by an upward orientation. 

There are two papers in the graph drawing literature [2,10] approaching 
geometrical  representations by means of a flow model. The present model and 
the two preceding ones have only linear programming as a common feature. 

An upward distribution consists of assigning 2n units to the vertices of M 
at the rate of exactly two per vertex, to route them from each vertex toward 
the adjacent faces through the angles at the rate of at most  one per angle, and 
in such a way to recollect at each face f of degree d(f) exactly d(f) - 2 units 
[3,s,9]. 

Given a toroidal map,  we define a network K(M) = (X, U) as follows. The 
vertex set X of K(M) consists of vertices V O F of the angle graph .4 of M and 
two extra  vertices, the source S and the sink T. Edges among vertices in V d F 
are the same as in the angle graph, and the source S is connected to each vertex 
of V (the vertices of M)  and the sink T is connected to each vertex of F (the 
faces of M).  The edges of K(M) are oriented, from S to V, from F to T, and 
from V to F.  The network K(M) contains an extra  edge a with the initial vertex 
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T and the terminal vertex S. Each edge e of the network K ( M )  has associated 
an interval [a~, b~] of real numbers. We will consider flows in K ( M ) ,  and ae and 
be will represent the lower and the upper bound on the flow through the edge e. 
The intervals [ae, b~] are defined as follows: 

- If e = or, then the interval is [21YI,cr 
- If e = (S, v), v E V, the interval is [ 2, 2 ]. 
- If e = (f ,  T),  f e F,  the interval is [d( f )  - 2, d( f )  - 2]. 
- If e = (v, f ) ,  v E V, f �9 F ,  the interval is [0, 1 ]. 

An integral flow ~ in K ( M )  defined on U is feasible if ~(e) �9 [ae, be] for every 
edge e �9 U. A direct consequence of the definitions is the following. 

P r o p o s i t i o n l .  Given a map M and its capacitated network K ( M ) ,  there is a 
one to one mapping between the feasible flows on K ( M )  and the upward distri- 
butions of M .  

Let us notice that  the max-flow min-cut algorithm can be used to obtain a 
feasible flow on K ( M )  in polynomial time if such a flow exists. The advantage 
of this method is that  it can be adjusted in such a way that  it works also in the 
case when some angles have a prefixed value. Another nice feature is that while 
a solution has been obtained, that  is an indegree-two orientation of A, all the 
other solutions including the ones which generate an orientation of M, can be 
obtained by inverting repeatedly the orientation of the edges of ,4  along a circuit. 
This fact is a graph consequence of a classical property of linear programming. 

3 A t o p o l o g i c a l  i n t e r p r e t a t i o n  o f  t h e  H o f f m a n ' s  f e a s i b i l i t y  

c o n d i t i o n s  

A cocycle w of a graph K = (X, U) is a set of edges E(Y,  Y )  for some comple- 
mentary subsets Y and Y of X.  If the graph K is oriented, then every cocycle 
w = E(Y,  Y )  can be written as 

w = w + - b w  - 

where w + are those edges from w that  are oriented from Y to Y, and w- are the 
edges directed from Y to Y. 

Hoffman proved[i] that ,  given a network K = (X, U), capacitated by intervals 
[a~, be], e q U, there exists a feasible flow in K if and only if for each (minimal) 
cocycle w the following conditions are satisfied: 

a, _< b, (5) 
eEw+ eEw- 

and 

eEw- eEw+ 

We shall refer to conditions (2) and (3) as Hoffman's conditions. 

(3) 
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T h e o r e m 2 .  A toroidal map M which admits an upward orientation is essen- 
tially 2-connected. 

Below we sketch a relation between Hoffman's conditions and the charac- 
teristic property (1) of essentially 2-connected maps that,  in particular, implies 
Theorem 2 since an upward orientation of M yields an upward distribution, and 
then this implies the existence of a flow solution in K(M) according to Propo- 
sition 1. Hoffman's conditions axe therefore satisfied, and appear as follows. If 
w is a cocycle of K(M) corresponding to the partition (Y,Y) of X, then con- 
dition (3) can be expressed as condition (2) for the same cocycle but viewed as 
being associated with the partition (Y, Y). Therefore it suffices to consider the 
following two cases 

(i) S, T ~ Y, and 
(ii) SEY, T ~ Y .  

Let V1 = Y ['1 V and V2 = V \ V1. Similarly we partition F into F1 = Y D F 
and F2 = F \ Ft. Then we can write (Y, Y) in case (i) as 

and in case (ii) as 

Y = VI UF1 
V =  V~U F2U{S,T} 

Y = u{s} 
Y =  V2 U F2 U {T} 

Euler's formula implies that  for a toroidal angle map 

Clearly, 

IE(V, F)[ = 2(IVl + [F[). 

JE(V,P )I= d(f) 
fEF1 

Let us first consider case (i). By (4) and (5), (2) is equivalent to 

[E(V, F~)[ - 2[F~ I _< 2[V11 + [E(V2, F1)[ 

which simplifies to 
2([V1[ + IF1[)-  [E(V~,FI)[ >_ O. 

Similarly we have for (3) 

2[V1[ _< [E(V1, F2)[ + IE(V, F1)[ - 21F~l 

(4) 

(5) 

o r  

2(IV21 + IF21) - IE(V2, F )I _> 0. 

In case (ii), (2) is trivial due to the infinite upper capacity b~ of a, and (3) can 
be expressed as: 

2IV[ _< 2[V2l - 2[Fll + IE(V1, F~)[ + [E(V, Fa)[. 
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Fig. 2. A tessellation representation of M and M* 

This is equivalent to 

2(IV21 + IF21) - IE(V2, F2)[ > 0.  

In both cases, the Hoffman's conditions on K ( M )  appear to be equivalent to the 
system of inequalities (1) defining the essential 2-connectivity of M. Conversely, 
the essential 2-connectivity of M appears to be sufficient for constructing an 
upward drawing of M, therefore also an upward orientation of M. The effective 
construction of an upward drawing of an essentially 2-connected toroidal map 
relies on the construction of a tessellation representation, obtained by a reduction 
process of essentially 2-connected maps. Details on these results are presented in 
[6]. (Tessellation representations of plane graphs are studied in [11].) In Figure 2 
we show the tessellation representation of the map M from Figure l(a). One has 
to consider only the part within the dotted fundamental polygon Q of the torus. 
The horizontal line segments represent the vertices of M, the vertical segments 
are the faces of M, and the quadrangles represent corresponding edges. All the 
incidences are preserved. 

T h e o r e m  3. A toroidal map M admits an upward drawing if and only if M is 
an essentially 2-connected map. 
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