
Pricing via Processing
or

Combatting Junk Mail

Cynthia Dwork and Moni Naor

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

Abstract. We present a computational technique for combatting junk
mail in particular and controlling access to a shared resource in general.
The main idea is to require a user t o compute a moderately hard, but
not intractable, function in order to gain access to the resource, thus pre-
venting frivolous use. To this end we suggest several pricing functions,
based on, respectively, extracting square roots modulo a prime, the Fiat-
Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signa-
ture scheme.

1 Introduction

Recently, one of us returned from a brief vacation, only to find 241 messages in
our reader. While junk mail has long been a nuisance in hard (snail) mail, we
believe t h a t electronic junk mail presents a much greater problem. In particular,
the ease and low cost of sending electronic mail, and in particular the simplicity of
sending the same message to many parties, all b u t invite abuse. In this paper we
suggest a computational approach to combatting the proliferation of electronic
mail.' More generally, we have designed an access control mechanism that ran be
used whenever it is desirable to restrain, but not prohibit, access to a resource.

Two general approaches have been used for limiting access to a resource:
legislation and usage fees. For example, it has been suggested that sending an
unsolicited F.4X message should be a misdemeanor. This approach encounters
obvious definitional problems. Usage fees may be a deterrent; however, we do
not want a system in which to send a letter or note between friends should have
a cost similar to t h a t of a postage stamp; similarly we do not wish to charge
a high fee to transmit long files between collaborators. Such an approach could
lead to underutilization of the electronic medium.

Since we believe the real cost of using the medium will not serve as a de-
terrent to junk mail, we propose a system t h a t imposes another t ype of cost
on transmissions. These costs will deter junk mail but will not interfere with
other uses of the system. The main idea is for the mail system to require the

A simple solution, due to Btum and M i d i [I], is simply not to read one's mail. We
have another solution.

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 139-147,1993.
0 Spnnger-Verlag Berlln Heldelberg 1993

140

sender to compute some moderately expensive, but not intractable, function of
the message and some additional information. Such a function is called a pricing
function.

In the more general setting, in which we have an arbitrary resource and
a resource manager, a user desiring access to the resource would compute a
moderately hard function of the request id. [The request id could be composed
of the user's identifier together with, say the date and time of the request.)

The pricing function may be chosen to have something like a t rap door:
given some additional information the computation would be considerably less
expensive. We call this a shortcut. The shortcut may be used by the resource
manager to allocate cheap access to the resource, as the manager sees fit, by
bypassing the control mechanism. For example, in the c a e of electronic mail the
shortcut permits the post office to grant bulk mailings at a price chosen by the
post office, circumventing the cost of directly evaluating the pricing function for
each recipient.

We believe our approach to be of practical interest. It also raises the point
that, unlike the situation with one-way functions, there is virtually no complexity
theory of moderately hard functions, and therefore yields excellent motivation
for the development of such a theory.

The rest of this paper is organized as follows. Section 2 contains a description
of the properties we require of pricing functions. Section 3 focusses on combatting
junk mail. Section 4 describes three possible candidates for pricing functions. We
require a family of hash functions satisfying certain properties. Potentially suit,-
able hash functions are discussed in more detail in Section 5. Section 6 contains
conclusions and open problems.

2 Definitions and Properties

We must distinguish between several grades of difficulty of computation. Rather
than describe the hardness of computing a function in terms of asymptotic
growth, or in terms of times an a particular machine, we focus on the relative
difficulty of certain corn putat ional tasks.

we require three classes of difficulty: easy, moderate, and hard. The term
moderate can be viewed in two different ways. As an upper bound, it means that
computation should be at most moderately hard (as opposed to hard); as a lower
bound it means that computation should be a t least moderately easy (as opposed
to easy). The precise definition of easy and moderate and hard will depend on the
particular implementation. However, there must be some significant gap between
easy and moderately easy. As usual, hard means intractable in reasonable time,
such as factoring a 1024bit product of two large primes.

The functions we consider for implementing our scheme have a diflerence
parameter that serves a role analogous to that of a security parameter in a
cryptosystem. A larger difference parameter stretches the difference between
easy and moderate. Thus, if it is desired that, on a given machine, checking that
a function has been correctly evaluated should require only, say, .01 seconds of

141

CPU time, while evaluating the function directly, without access to the shortcut
information, should require 10 seconds, the difference parameter can be chosen
appropriately.

A function f is a pricing function if

1. f is moderately easy to compute;
2. f is not amenable to amortization: given t values ml , . . . ml, computing

f(ml) , . . . , f (r n c) has amortized cost comparable to computing f(m,) for
any 1 5 i 5 C;

3. given z and y it is easy to determine if y = f(z).

We use the term “function1’ loosely: sometimes f will be a relation.
F = {fa} is a family of pricing functions indexed by s E S C { O , l) * , such

that S is not hard to sample.
7 = {Fk} is a collection of families of pricing functions indexed by a difference

parameter k.
It is important not to choose a function that after some preprocessing can be

computed very efficiently. Consider the following family of pricing functions F ;
based on subset sum. The index s is a set of .! numbers al, u2,. . . uc, 1 5 ui I 2‘:
such that 2‘ is moderately large. For a given request z, fs(z) is a subset of
ul, uz, . . .at that s i m s to z. Computing fS seems to require time proportional to
2‘. As was shown by Schroepel and Shamir [17], after preprocessing, using only a
moderate amount of storage, such problems can be solved much more efficiently.
Thus, there could be large difference between the time spent evaluating f8 on
a large number k of different inputs, such as would be necessary for sending
bulk mail, and k individual computations of fs from scratch. This is clearly
undesirable.

We now intrcduce the notion of a shortcut, similar in spirit to a trapdoor.
A pricing function with a shortcut is easy to evaluate given the shortcut. In
particular, the shortcut is used for bypassing the access control mechanism, a t
the discretion of the resource manager.

A collection of families of pricing functions is said to have the shortcut prop-
erty if

1. there exists a polynomial time algorithm -4 that generates a pair s,c;
2. f3 is a function in F;
3. c is a shortcut: computing fs is easy given c.

Note that since f8 is a pricing function, it is not amenable to amortization. Thus,
given s, finding c or an equivalent shortcut, should be hard.

Remark. The consequences of a “broken” function are not severe. For example, if
a cheating sender actually sends few messages, then little harm is done; if it sends
many messages then the cheating will be suspected, if not actually detected, and
the pricing function or its key can be changed.

In the context of junk mail we use hash functions so that we never apply the
pricing function to a message, which may be long, but only to its hash value.

Ideally, the hash function should be very easy to compute. However, given m,
h, and m’, it should not be easy to find m“ closely related to m’ such that
h(m”) = h(m). For example, if Macy’s sends an announcement rn of a sale, and
later wishes to send an announcement m’ of another sale, it should not be easy
to find a suffix z such that h(m’ . z) = h(m).

Suitable hash functions could be based on DES, subset sum, MD4, and Sne-
fru. We briefly discuss each of these in Section 5.

3 JunkMail

The primary motivation for our work is combatting electronic junk mail. We
envision an environment in which people have computers that are connected to
a communication network. The computers may be used for various anticipated
activities, such as, for example, updating one’s personal database (learning that
a check has cleared), subscribing to a news service, and so on. This communica-
tion requires no human participation. This is different from the situation when
one receives a personal letter, or an advertisement, which clearly require one’s
attention. Our interest is in controlling mail of this second kind.

The system requires a single pricing function f a , with shortcut c: and a hash
function h. There is a pricing authority who controls the selection of the pricing
function and the setting of usage fees. All users agree to obey the authority. There
can be any number of trusted agents that receive the shortcut information from
the pricing authority. The functions h and fs are known to all users, but only
the pricing authority and its trusted agents know c.

To send a message m at time t to destination d, the sender computes y =
f , (h(m.t-d)) and sends y, m, t , d to d. The recipient’s mail program verifies that
y = f s (h(m . t . d)) . If the verification fails, or if t is significantly different from
the current time, then the message is discarded and (optionally) the sender is
notified that transmission failed. If the verification succeeds and the message is
timely, then the message is routed to the reader.

Suppose the pricing function f has no short-cut. In this case; if one wants to
write a personal letter, the computation of fs may take time proportional to the
time taken t o compose the letter. For typical private use that may be acceptable.
In contrast, the computational cost of a bulk mailing, even a “desirable” (not
junk) mailing, would be prohibitive, defeating the whole point of high bandwidth
communication.

In our approach bulk mail, such as notification of acceptance or rejection
from a conference, is sent using the shortcut c, which necessarily requires the
participation of the system manager. The sender pays a fee and prepares a set
of letters, and one of the trusted agents evaluates the pricing function as needed
for all the letters, using the shortcut. Since the fee is chosen to deter junk mail,
and not to cover the actual costs of the mailing, it can simply be turned over to
the recipients of the message.2

a Another possible scenario would be that in order to send a user a letter, some compu-

143

Finally, each user can have a frequent correspondent list of senders from whom
messages are accepted without verification. Thus, friends and relatives could
circumvent the system entirely. Moreover, one could join a mailing list by adding
the name of the distributor to one's list of frequent correspondents? The list,
which is maintained locally by the recipient, can be changed as needed. Thus,
when submitting a paper to a conference, an author can add the name of the
conference to the list of frequent corresponders. In this way the conference is
spared the fees of bulk mailing.

4 Pricing Rznctions

In this section we list three candidate families of pricing functions. The first one
is the simplest, but has no shortcut.

4.1 Extracting Square Roots

The simplest implementation of our idea is to base the difficulty of sending on
the difficulty (but not infeasibility) of extracting square roots modulo a prime p .
Again, there is no known shortcut for this function.

- Index: A primep of length depending on the difference parameter; a rea-

- Definition of fp: The domain of f, is Z p . fp(z) = f i mod p .
- Verification: Given 2, y, check that y2 z z mod p .

sonable length would be 1024 bits.

The checking step requires only one multiplication. In contrast, no method
of extracting square roots modp is known that requires fewer than about logp
multiplications. Thus, the larger we take the length of p , the larger the difference
between the time needed to evaluate f p and the time needed for verification.

4.2 A Fiat-Shamir Based Scheme

This implementation is based on the signature scheme of Fiat and Shamir [6].

- Index: Let N = p q , where p and q are primes of sufficient length to make
factoring N infeasible (currently 512 bits suffice). Let y1 = x:, . . . ,yk = zz be
Ic squares modulo N , where k depends on the difference parameter. Finally,
let h be a hash function whose domain is 2; x Z;, and whose range is (0, l}k.
h can be obtained from any of the hash functions described in Section 5 by
taking the k least significant bits of the output. The index s is the (k + 2)-
tuple (N , Y1>. . ., Ykl h).

- Shortcut: The square roots zt, . . . , zk.
tation that is useful to the recipient must be done. We currently have no candidates
for such useful computation.
Similarly, one could have a list of senders to whom access is categorically denied.

144

- Definition of fs: The domain of fa is 2;. Below, we describe a moderately
easy algorithm for finding z and T~ satisfying the following conditions. Let
US write h(z, T’) = bl . . .6k , where each bi is a single bit. Then z and T~ must
satisfy

.zz = T ~ X ‘ n yibi mod N .
k

*=l

fs(z) = (z , T ’) (note that fS is a relation).
- Verification: Given 2, z , r 2 , compute bl . - . bk = h(z , T ~) and check that

z 2 = f 2z2 yibi mod N .

- To Evaluate fa with Shortcut Informatiox Choose an T at random,
compute h(z , T ’) = bl . . . b k , and set .z = T Z

fs(z) = (z,?) can be computed as follows.

xtb,. fs(z) = (z , T’).

Guess bl . . . 6 k E { O , I l k .
Compute B = nf’=, yzb , mod N .
Repeat :

Choose random z E Z;
Define T~ to be T’ = (z 2 / B z 2) mod N

Until h(z, r 2) = bl . . . b k .

The expected number of iterations is 2 k , which, based on the intuition driv-
ing the Fiat-Shamir signature scheme, seems to be the best one can hope for. In
particular, if h is random, then one can do no better. In particular, retrieving
the shortcut XI,. . . , z k is as hard as factoring j14. In contrast, the verification
procedure involves about 2k multiplications and one evaluation of the hash func-
tion. Similarly, given the shortcut the function can be evaluated using about kr
multiplications and one evaluation of the hash function. Thus, k is the difference
parameter. -4 reasonable choice is k = 10.

4.3
Signature Schemes

A source of suggestions for pricing €unctions with short cuts is signature schemes
that have been broken. The “right” type of breaking applicable for our purposes
is one that does not retrieve the private signature key (analogous to factoring N
in the previous subsection), but nevertheless allows forging signatures by some
moderately easy algorithm.

In this section we describe an implementation based on the proposed signa-
ture scheme of Ong, Schnorr and Shamir and the Pollard algorithm for breaking
it. In [la , 131 Ong, Schnorr, and Shaniir suggested a very efficient signature
scheme based on qeadratic equations modulo a composite: the public key is a
modulus N (whose factorization remains secret) and an element k E Z;. The
private key is u such that u3 = - k - l mod N , (i.e a square root of the inverse of

An Ong-Schnorr-Shamir Based Scheme or Recycling Broken

145

-k modulo N) . A signature for a message m (which we assume is in the range
0.. . N - 1) is a solution (21, z2) of the equation zf + k z; = m mod N . There
is an efficient signing algorithm, requiring knowledge of the private key:

- choose random T I , ~2 € Z i such that T I . ~2 = m mod N
- set 51 = 5 . (T I + ~ 2) mod N and 22 = 1 . u. (PI - ~ 2) mod N .

Note that verifying a signature is extremely easy, requiring only 3 modular mul-
tiplication.

Pollard (reported in [14]) suggested a method of solving the equation with-
out prior knowledge of the private key (finding the private key itself is hard -
equivalent to factoring [15]). The method requires roughly log N iterations, and
thus can be considered moderately hard, as compared with the verification and
signing algorithms, which require only a constant number of multiplications and
inversions. For excellent descriptions of Pollard's method and related work see

We now describe how to use the Ong-Schnorr-Shamir signature scheme as a
[4,91.

pricing function.

- Index: Let N = pq where p and q are primes let k E 2;. Then s = (N, k).
- Shortcut: u such that u' = k - l mod N
- Definit ion of fs: The domain of fs is 2;. Then f3(z) = (q , z 2) , where

= z mod N . fs is computed using Pollard's algorithm, as described zf +
above.

- Verification: Given Z I , Z ~ , z, verify that 5 = x: + Icsi.
- TO Evaluate fS with Shortcut Information: Use the Ong-Schnorr-

Shamir algorithm for signing.

5 Hash Functions

Recall that we need hash functions for two purposes. First, in the context of junk
mail, we hash messages down to some reasonable length, say 512 bits, and apply
the pricing function to the hashed value of the message. In addition, we need
hashing in the pricing function based on the signature scheme of Fiat-Shamir.

We briefly discuss four candidate hash functions. Each of these can be com-
puted very quickly.

- DES: Several methods have been suggested for creating a one-way hash
function based on DES (e .g . [lo] and the references contained therein). Since
DES is implemented in VLSI, and such a chip might become widely used
for other purposes, this approach would be very efficient. Note that various
attacks based on the "birthday paradox" 151 are not really relevant to our
application since the effort needed to carry out such attacks is moderately
hard.

- MD4: MD4 is a candidate one-way hash function proposed by Rivest [IS].
It was designed explicitly to have high speed in software. The length of the
output is either 128 or 256 bits. Although a simplified version of MD4 has
been successfully attacked 131, we know of no attack on the full MD4.

146

- Subset Sum: Impagliazzo and Naor [8] have proposed using "high density"
subset sum problems as one-way hash functions. They showed that finding
colliding pairs is as hard as solving the subset sum problem for this density.
Although this approach is probably less efficient than the others mentioned
here, the function enjoys many useful statistical properties (viz. 181). More
over, i t is parameterized and therefore flexible.

- Snefru: Snefru was proposed by Merkle [ll] as a one-way hash function
suitable for software, and was broken by Biham and Shamir [2]. However,
the Biham and Shamir attack still requires about 224 operations to find a
partner of a given message. Thus, it may still be viable for our purposes.

6 Discussion and Open Problems

Of the three pricing functions described in Section 4, the Fiat-Shamir is the most
flexible and enjoys the greatest difference function: changing k by 1 doubles the
difference. The disadvantage is that this function, like the Fiat-Shamir scheme,
requires the "extra" hash function.

AS mentioned in the Introduction, there is no theory of moderately hard
functions. The most obvious theoretical open question is to develop such a theory,
analogous, perhaps, to the theory of one-way functions. Another area of research
is to find additional candidates for pricing functions. Fortunately, a trial and
error approach here is not so risky as in cryptography, since as discussed earlier,
the consequences of a "broken" pricing function are not severe. If someone tries to
make money from having found cheaper ways of evaluating the pricing function,
then he or she underprices the pricing authority. Either few people will know
about this, in which case the damage is slight, or it will become public.

Finally, the evaluation of the pricing function serves no useful purpose, except
serving as a deterrent. It would be exciting to come up with a scheme in which
evaluating the pricing function serves some additional purpose.

References

1. M. Blum and S. Micali, personal communication.
2. E. Biham and A. Shamir, Dafferential Cryptanalysis of Snefru, Khafre, REDOC-II,

3. B. den Boer and A. Bosselaers, An attuck on the last two rounds of MD4, Crypto

4. E. F. Brickell and A. M. Odlyzko, Cyptanalysis: A Survey of Recent Results, Pro-

5. D. Coppersmith, Another Birthdug Attack, Proc. CRYPT0 '85, Springer Verlag,

6. A. Fiat and A. Shamir, H o w to prove yourself, Proc. of Crypto 86, pp. 641-654.
7. B. A. Huberman, The Ecology of Computing, Studies in Computer Science and

8. R. Impagliazzo and M. Naor, Cyptogruphic xhemes provably secure as subset sum,

LOXI, and Luczfer, Crypto '91 abstracts.

'91 abstracts.

ceedings of the IEEE, vol. 76, pp. 578-593, May 1988.

LNCS, Vol. 218, pp. 369-378.

Artificial Intelligence 2, North Holland, Amsterdam, 1988.

Proc. of the 30th FOCS, 1989.

147

9. K. McCurley, Odd and ends from cryptology and computational number theory, in
Crypttoloy and computational number theory, edited by C. Pomerance, AMS
short course, 1990, pp. 145-166.

10. R- C. Merkle, One Way Functions and DES, PTOC. of Crypt0~89, pp. 428-446.
11. R. C. Merkle, Fast Software One- Way Hash Function, J. of Cryptology Vol3, No.

12. €3. Ong, C. P.' Schnorr and A. Shamir, An efficient signature scheme based on

13. H. Ong, C . P. Schnorr and A. Shamir, Efficient signature scheme based on polyno-

14. J. M. Pollard and C. P. Schnorr, Solution o f X 2 + ky2 = m mod n, IEEE Trans.

15. M. 0. Rabin, Digital Signatures and Public Key Functions as Intractable 4s Fac-

16. R. L. Rivest, The MD4 Message Digest Algorithm, Proc of Crypto'90, pp. 303-311.
17. R. Schroepel and A. Shamir, A T = U(2"/2), S = 0 (2 " / 4) algorithm for certain

1, pp. 43-58, 1990.

quadratic equations, Proc 16th STOC, 1984, pp. 208-216.

mial equations, Proc of Crypto 84, pp. 37-46.

on Information Theory., 1988.

toring Technical Memo TM-212, Lab. for Computer Science, MIT, 1979.

NP-complete problems. SIAM J. Computing, 10 (1981), pp. 456-464.

	Pricing via ProcessingorCombatting Junk Mail
	1 Introduction
	2 Definitions and Properties
	3 JunkMail
	4 Pricing Rznctions
	4.1 Extracting Square Roots
	4.2 A Fiat-Shamir Based Scheme
	4.3 An Ong-Schnorr-Shamir Based Scheme or Recycling Broken Signature Schemes

	5 Hash Functions
	6 Discussion and Open Problems
	References

