
An Experimental Study of Probing-Based
Admission Control for DiffServ Architectures

Susana Sargento1, Roger Salgado1, Miguel Carmo1, Victor Marques2,
Rui Valadas1, and Edward Knightly3

1 University of Aveiro/Institute of Telecommunications, 3810 Aveiro, Portugal,
susana@ua.pt, roger@av.it.pt, etmac@ua.pt and rv@ua.pt

2 Portugal Telecom Inovação, 3810 Aveiro, Portugal,
victor-m-marques@ptinovacao.pt,

3 ECE Dept., MS380, Rice University, Houston, TX 77005, USA,
knightly@ece.rice.edu

Abstract. Probing is a well-known admission control technique that
can achieve high utilization and per-flow quality of service in a scalable
way. We have recently introduced an extension to the basic probing
technique, called ε-probing, to overcome a resource stealing problem
that impairs the use of probing in systems with multiple service classes.
In this paper we describe an experimental system that was designed
to evaluate the effectiveness of both probing and ε-probing techniques.
We have developed a software module that implements the probing
functionality, which can be inserted in end hosts or edge routers. Several
tests were carried out to study the effect of various system parameters
in the performance of the probing techniques. The results clearly show
that both probing techniques are able to accurately perform admission
control while achieving high utilization. Moreover, they also show
that in environments with multiple service classes such as DiffServ,
ε-probing can eliminate the resource stealing problem, providing an
effective solution to support per flow QoS without signaling and without
maintaining flow state at core routers.

Keywords: Call Admission Control, DiffServ, QoS, Test-bed.

1 Introduction

The Integrated Services (IntServ) architecture of the IETF provides a mechanism
for supporting quality-of-service for real-time flows. Two important components
of this architecture are admission control [3], [10] and signaling [5]: the former
ensures that sufficient network resources are available for each new flow, and the
latter communicates such resource demands to each router along the flow’s path.
However, the demand for high-speed core routers to process per-flow reservation
requests introduces scalability limitations in this architecture.

In contrast, the Differentiated Services (DiffServ) architecture [6], [2] achieves
scalability by limiting quality-of-service functionalities to class-based priority

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 49–61, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

50 S. Sargento et al.

mechanisms together with service level agreements. However, without per-flow
admission control, such an approach necessarily weakens the service model as
compared to IntServ, namely bandwidth or loss guarantees are not assured to
individual flows.

A key challenge addressed in recent research is how to simultaneously achieve
the scalability of DiffServ and the per-flow QoS assurance of IntServ. Towards
this end, several novel architectures and algorithms have been proposed, which
require always some specific functionality to be employed at edge and/or core
nodes. In probing schemes ([1], [8], [9]), these functionalities are not required:
there is no signaling protocol and no special packet processing within core nodes,
and still a per-flow QoS is assured. With such a scheme, the endpoints perform
admission control by assessing the congestion state of the network, transmitting
a sequence of probe packets and measuring the corresponding performance. If
the performance (e.g., loss ratio) of the probes is acceptable, the flow is admitted;
otherwise it is rejected. More specifically, to establish a real-time flow between
two hosts, the sender host transmits a sequence of probes into the network at
the desired rate and flow behavior. If the loss ratio of the probes is below a pre-
established threshold for the traffic class, then the flow is admitted, and otherwise
it is rejected. Scalability is achieved in such a framework by pushing all quality-
of-service functionality to end-hosts, indeed removing the need for any signaling
or storage of per-flow state. Moreover, [4] found that such an architecture is
indeed able to provide a single controlled-load like service as defined in [11].

However, when host-controlled probing schemes are generalized to support
multiple service classes, a resource stealing problem, first described in [4], may
occur. To illustrate the resource stealing problem, consider the example of a
Class-Based Weighted Fair Queuing (CBQ) scheduler, where each of two classes
is assigned a weight of 50%. Assume that the offered load is initially 0.8C in
class 1 and 0.2C in class 2, where C is the link capacity. Due to the work
conserving nature of the scheduler, class 1 can borrow class 2 resources and
utilize up to 80% of the link capacity without loss. If now class 2 probes the link
for an additional offered load of 0.3C, class 2 flows will be admitted and served
without loss. However, the service rate of class 1 will decrease to 0.5C and 30%
of class 1 packets (which belong to already admitted flows) will be dropped.
Thus the admission of new flows in class 2 forced class 1 into a situation of
QoS violations that can not be detected by the probing flow. Such resource
stealing arises from a fundamental observability issue in a multi-class system:
the performance isolation property provided by CBQ schedulers also inhibits
flows from assessing their performance impact on other classes.

In [7] we proposed ε-probing as a probing scheme designed to eliminate steal-
ing in CBQ schedulers in a minimally invasive way. The goal of ε-probing is to
enable inter-class resource sharing to the maximal extent allowed by the system
architecture. In ε-probing, a new flow requesting admission in a class transmits
a probe in the desired class and, simultaneously, a probe with a small bandwidth
ε in all other classes. The motivating design principle is that the impact of the
new flow on all classes must be observed, so that the new flow is only admitted

An Experimental Study of Probing-Based Admission Control 51

if all probes, including the ε-probes, are admitted. Consider again the previous
example of the CBQ scheduler. With ε-probing, when class 2 is probed for the
additional 0.3C, class 1 is also probed with ε-probes. The probing in class 2 is
successful but the ε-probing in class 1 will not, since class 1 is not allowed to
use more bandwidth. Class 2 flows will not be admitted until class 1 releases
bandwidth and no resource stealing will occur.

We developed an experimental system with a DiffServ architecture that in-
cludes both probing and ε-probing admission control algorithms. The perfor-
mance of these algorithms is studied through a number of experiments.

The paper is organized as follows. In section 2 we present the experimental
system architecture. In sections 3 and 4 we describe two software modules, the
traffic generator and the probing module, which were developed as part of the
overall experimental system. Section 5 presents the actual experimental set-up
used to carry out the experiments. In section 6 we discuss the experimental
results. Finally, in section 7 we conclude the paper.

2 Experimental System Architecture

In this section, we describe the experimental system that is designed to evaluate
the efficiency of the proposed ε-probing technique, while closely replicating an
operational DiffServ network.

The goal in our experimental studies is to observe the behavior of the probing
and ε-probing techniques on a congested network. It would be impractical to have
the overall traffic demand generated by many different hosts, as it will be the
situation in an operational DiffServ network. Instead we have developed a traffic
generator software module that, for each Class of Service (CoS), generates traffic
at both flow level and packet level. Due to performance reasons, in the actual
experimental set-up we use one host for each CoS.

The probing functionality was implemented in a probing software module,
which probes on behalf of a set of users. The probing module can be inserted in
end-hosts or edge routers. In the actual experimental set-up the probing module
is installed in a dedicated PC, called the probing server, which is connected to
a local network delimited by two routers, an access router and an edge router.
In this configuration, it can be seen as extending the capabilities of current
low-cost edge routers to support probing based admission control. The probing
module operates in promiscuous mode, by listening to all packets injected into
this local network. It accepts flow set-up requests and performs admission control
by probing the DiffServ network; it is also responsible for marking the data
packets sent by the traffic generators according to requested CoS. The edge
router performs packet classification and scheduling, functions that are found
in current low-cost routers. The access router is only used for traffic isolation.
Thus, the set of two routers plus probing server emulates a DiffServ edge router
that includes admission control based on ε-probing.

The interaction between the various network elements is performed by spe-
cial purpose application layer protocols. The exchange of control information

52 S. Sargento et al.

Access Network

Access
Router

Access Network
Probing
Server

Probing
Server

Access
Router

Edge
Router

Edge
Router

DiffServ
Network

Fig. 1. Experimental system architecture.

between the traffic generator and the probing module is done using TCP. An
alternative here could be the use of RSVP. The exchange of control information
between probing modules and the data transport is done using UDP.

The message flow is the following (Figure 2). The traffic generator asks for the
admission of a new flow by opening a TCP connection with the probing module
and sending a REQUEST message. The REQUEST message includes the source
and destination IP addresses, the source and destination UDP/TCP ports, the
protocol type and the desired class of service. This information is required in
order to completely identify the flow at the probing module. Upon receiving the
REQUEST message, the ingress probing module initiates the probing process. It
sends a PROBE START message, followed by several probe packets, ending with
a PROBE STOP message. All these messages are addressed to the destination
host and transported over UDP. As mentioned before, there are two types of
probe packets: regular probes, sent on the desired class of service, and ε-probes
sent on the remaining classes. The egress probing module listens promiscuously
to these control messages and probing packets, and counts the number of probes
received in each class between PROBE START and PROBE STOP. When it
hears the PROBE STOP message it sends a STATISTICS message back to the
ingress probing module with this information. If the STATISTICS message is not
received within a pre-defined timeout the flow is rejected, and the TCP connec-
tion with the traffic generator is closed. Otherwise, the probing module performs
an admission control decision based on the counts of probes and ε-probes car-
ried in the STATISTICS message and on the target loss ratio. If the flow is
accepted it sends an AUTHORIZE message and closes the TCP connection with
the traffic generator; otherwise it sends a REJECT message, also closing the
TCP connection. If the flow is accepted the traffic module starts sending data
packets (transported over UDP). To signal the end of data transmission, the
traffic generator module opens a new TCP connection with the ingress probing
module and sends a END SESSION message.

The REQUEST and END SESSION messages have the same format, and
are identified by a flag. The AUTHORIZE message corresponds to ”0” and
the REJECT message to ”1”, both coded as unsigned int. The probe control
messages, PROBE START, PROBE STOP and STATISTICS, include three
fields: the first field identifies each message; the second indicates the CoS; the
third is used to transport, in the STATISTICS message, the counts of probes in
each class. Note that the information exchanged at the application layer is not

An Experimental Study of Probing-Based Admission Control 53

sufficient to completely identify a flow. The IP addresses and UDP/TCP ports
are also required. This option had the purpose of minimizing the overhead.

All sockets used in the communication between probing modules are of type
raw sockets. As will be detailed in section 4, this type of sockets allows operation
in promiscuous mode and manipulation of the header fields from lower layers.

PROBE START

STATISTICS

REQUEST

Probe...
Probe

PROBE STOP

AUTHORIZE

Data

Data
... Data

Data
...

END SESSION

Traffic
Generator

Ingress
Probing
Module

Open TCP Socket

Close TCP Socket

DiffServ Network

Open TCP Socket

Close TCP Socket

Egress
Probing
Module

Traffic
Generator

Probe

Probe
...

Data

Data
...

PROBE START

PROBE STOP

Fig. 2. Message flow between traffic generator and probing modules.

We use the IP TOS byte field to differentiate among classes of service and
priorities. It is assumed that control messages injected into the DiffServ network
have higher priority. The precedence bits of the TOS byte are used to differentiate
between control, probe, ε-probe and data packets. Specifically, we assign 110 to
control packets, 010 to probe packets, 100 to ε-probe packets and 000 to data
packets. The differentiation between CoS is carried out using the TOS bits of
the TOS byte. We leave to the probing module the role of manipulating the TOS
byte. All data packets sent by the traffic generator have a TOS byte of zero and
are marked according to their class of service at the probing module.

Both the traffic generator and probing modules are developed to run under
Microsoft Windows 2000. The software is developed using Microsoft Visual C++,
Windows Sockets 2.0 and resorts to multi-thread programming techniques. In
our implementation each flow is a thread and, inside each flow’s thread, tasks
that can be executed concurrently give rise to new threads. The use of Win-
dows Sockets 2.0 and Microsoft SDK make possible the implementation of the
promiscuous mode operation at the probing module. Note that the same type of
facilities were available for a Unix development.

In the next two sections we will describe with more detail the traffic generator
and the probing modules.

54 S. Sargento et al.

3 Traffic Generator Module

The traffic generator module generates the traffic of each CoS at two levels,
flow and packet level. It generates new flows according to a Poisson process. The
admitted flows have a duration characterized by an exponential distribution. For
each flow, the traffic generator creates the corresponding packet stream. Several
models are available for the packet arrival process and for the packet length. The
arrival process can be Constant Bit Rate (CBR) or ON-OFF with exponential
or Pareto ON and OFF durations. CBR sources are only characterized by the
packet arrival rate. ON-OFF sources require the specification of the average
ON and OFF times and of the packet arrival rate in the ON state. The Pareto
distribution requires an additional parameter called shape. The packet length
may be fixed, exponential or Pareto.

The traffic generator handles two types of sockets: a TCP socket for the
exchange of control information with the probing module, and a UDP socket for
data transmission. There is also a thread per CoS that schedules the arrival of
the next flow and determines its duration. When a flow starts, another thread is
created, which is responsible for the generation of packets for that flow, and of
the control messages exchanged between the traffic generator and the probing
module.

4 Probing Module

The probing module is responsible for handling the probing process and for
packet marking. As mentioned above, the probing module listens promiscuously
to the packets that are injected into its local network. This mode is implemented
using raw sockets, which allows the manipulation of the IP header fields. At the
ingress side, the probing module captures the data packets and re-injects them
into its local network after changing the TOS and checksum fields of the IP
header. Since Microsoft Windows 2000 does not support natively the manipula-
tion of the TOS byte, we developed a patch for this purpose. Besides the raw
sockets, the probing module handles a TCP socket for the exchange of control
information with the probing module and UDP sockets for the transmission of
data packets, probes and ε-probes and probe control messages. There is a thread
permanently listening for new flow set-up requests, at a specific port. When the
probing module receives a request from the traffic generator, this thread will
produce a new one that will handle the flow. To increase the performance of the
system, we use asynchronous UDP sockets to prevent the permanent polling of
the socket state. The TCP sockets used in the implementation are of blocking
type. In this case, the program suspends the execution of other tasks until the
socket operation is finished.

The main window allows the configuration of several parameters: the server
port for communication with the traffic generator, the gateways towards the ac-
cess network or the DiffServ network, the probing duration and timeout, and the
link capacity. Note that the link capacity is only required for the computation of

An Experimental Study of Probing-Based Admission Control 55

some parameters (wrong decisions and stolen bandwidth). The timeout indicates
the maximum time interval after sending PROBE STOP that the module waits
for the STATISTICS message.

Two other windows can be opened from the main one, called probing traffic
and statistics, respectively. There is one statistics window for each CoS. The
probing traffic window (Figure 3) is where the traffic models and parameters for
the generation of probes and ε-probes are configured. It also includes the target
loss ratio for probes and ε-probes, and an option for deactivation of ε-probes.
The statistics windows includes, for each CoS, statistics such as the number
of data packets, probes and ε-probes received and sent, the number of blocked
and accepted flows, the number of wrong decisions and the percentage of stolen
bandwidth. The window also displays a curve of the evolution of the blocking
probability over time. All these parameters are updated in real time. Also, the
configuration of the experiment’s length and of the warm-up time for statistics
collection are performed in this window.

Fig. 3. Probing traffic window of the probing module.

5 Experimental Set-Up

We perform experiments both with two CoS. All sets of experiments resort to
the set-up depicted in Figure 4. Each source host A and B generates traffic in a
different CoS. Traffic generator modules are plugged in both source hosts A and
B. Hosts A and B are 120 MHz Pentium PCs with 64 Mbytes of RAM. Because
of performance reasons two probing servers are used at the ingress side. Probing

56 S. Sargento et al.

server A is a 350 MHz Pentium II with 128 Mbytes of RAM, and probing server
B is a 733 MHz Pentium III with 256 Mbytes of RAM. The probing server at the
egress side is a 933 MHz Pentium III with 256 Mbytes of RAM. The Operating
System (OS) of the source and destination hosts A and B is Windows NT 4.0,
and the OS of the probing servers is Windows 2000 Professional.

Baystack
310-24T

1605-R 1605-R 1605-R

1605-R

1605-R

Probing Server

Probing
Server

Probing
Server

Source A

Source B

Destination A

Destination B

Fig. 4. Experimental Set-Up.

All routers used in the experiments are Cisco 1605 R, running IOS version
12.0(7)T. The ingress and egress edge routers are connected through a serial
link, because it offers great flexibility in controlling the link’s bandwidth. Our
experiments with two CoS resort to Cisco’s Custom Queuing. This mechanism
works with a maximum of 16 queues, that can be divided in two groups, where
one group uses strict priority scheduling and the other uses deficit round-robin
scheduling; the latter group has a lower strict priority. In our case, we configure
one queue with strict priority (for the control traffic) and two queues with deficit
round robin (for the data and probing traffic). Classification at the edge routers
is based on the analysis of the precedence and TOS bits and resorts to Cisco’s
Access Lists. An Ethernet switch (Baystack 310-24T) is used to multiplex the
traffic from hosts A and B at the ingress side.

As referred in [4], the probing schemes are able to guarantee a per-flow QoS
to controlled load services. The best-effort and the guaranteed services are not
considered here, because there will be a different priority for each type of services
and a rate limiter will be associated with the guaranteed traffic. Then, our study
can be based only on the controlled load services.

An Experimental Study of Probing-Based Admission Control 57

6 Experimental Results and Discussion

In this section we present and discuss two sets of experiments. The first set
considers two CoS and a constant offered load. The second set considers also
two CoS but a time-varying offered load.

The traffic sources used in the experiments are always CBR. The arrival and
departure rates are adjusted to give blocking probabilities near 0.2 (correspond-
ing to an offered traffic that is approximately 120% of the link capacity). The
mean number of active flows in a traffic class is ρ = λ/µ, where λ and µ are
respectively the mean flow arrival and depart rates. The offered load is given
by the mean number of flows (ρ) multiplied by its bandwidth. Unless otherwise
specified, the link capacity is 1 Mb/sec, the packet length is 125 bytes, the buffer
size of the queues is 24000 bytes and the length of each experiment is 1200 sec-
onds. A warm-up time is used in all experiments, which is at least two times the
highest value of the flow’s average duration. Note that the probing bandwidth
always equals the flow bandwidth. Each experiment described bellow is repeated
five times and the results represent the corresponding average values.

6.1 Experiments with two CoS and a Constant Offered Load

This set of experiments addresses two traffic CoS and a constant offered load,
i.e., the arrival rate and mean duration of the flows do not vary during the ex-
periments. The goal here is to address the resource stealing problem and analyze
the behavior of ε-probing. In all experiments, the target loss ratio of the probes
and ε-probes is 5%. The flow’s bandwidth is 40 Kb/sec in class 1 and 64 Kb/sec
in class 2. The flow’s ρ is 4 in class 1 and 11 in class 2. The weight assigned to
class 1 is 20% and the weight assigned to class 2 is 80%.

Probing duration. In this experiment the bandwidth of the ε-probes in both
classes is 20 Kb/sec and the bandwidth of the probes in each class equals that
of the flows requesting admission. Figure 5(a) shows the data and probe loss
ratios in each class, as a function of the probing duration. Figure 5(b) shows the
corresponding blocking probabilities. The data and probe loss ratios are always
below the target, showing that the probing-based admission control operates
correctly. The blocking probabilities increase and there is also a slight increase in
the probe loss ratio, as the probing duration increases. Except for small probing
durations, the data loss is always below the probe loss since not all flows are
admitted. For small probing durations, the data loss in class 2 is larger than
the corresponding probe loss, which can be explained by lack of accuracy due
to insufficient probing duration. The data loss decreases for probing durations
between 0.5 and 4 seconds. One might expect that a larger probing time would
produce a more accurate estimation of the data loss ratio, i.e., a measured data
loss ratio closer to the target (which is 5% in both classes). However, due to the
overhead introduced by longer probing times, the effect is the opposite. The same
behavior is observed via discrete-event simulation in [4]. For probing durations

58 S. Sargento et al.

greater than 4 seconds the data loss ratio increases because the probing traffic
gets significant contributing itself to the degradation of the data loss ratio. The
loss ratio in class 2 is higher because since class 2 flows have higher bandwidth
more probes are generated in the same probing duration.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Probing Duration (sec)

Lo
ss

 (
%

)

Data Loss − Class 1
Data Loss − Class 2
Probe Loss − Class 1
Probe Loss − Class 2

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

Probing Duration (sec)

B
lo

ck
in

g
P

ro
ba

bi
lit

y
(%

)

Class 1
Class 2

(b)

Fig. 5. Effect of probing duration on (a) data and probe loss, and (b) blocking proba-
bility.

Mismatch between offered load and CBQ weight. In this experiment we
introduce a mismatch between the offered load and the CBQ weight of class 1.
The weight is kept as before at 20%; the offered load is increased from 20% to
approximately 50% of the link capacity (by increasing ρ from 4 to 11). In class 2
we keep everything as before. In Figure 6 we show the data and probe loss ratios
versus the bandwidth of ε-probes. With no ε-probing (a null ε-probe bandwidth)
the data loss in class 2 is almost 8%, which is larger than the threshold. This
behavior is maintained for ε-probe bandwidths bellow 4 Kb/sec, and can be at-
tributed to resource stealing. In fact, whenever class 2 goes into underload, class
1 flows will try to use some of the fair-share bandwidth of class 2 with success.
Class 1 flows will then experience resource stealing because in this situation,
and since probing is only in the requested class, new requests for class 2 flows
will be accepted (at the cost of stealing bandwidth to already accepted class 1
flows). Figure 6 also shows that the probing loss in class 2 increases with the
ε-probe bandwidth. This increase is responsible for blocking more class 2 flows
when class 1 is using some of the fair-share bandwidth of class 2, which reduces
the bandwidth stealing in class 1.

6.2 Experiment with two CoS and a Time-Varying Offered Load

In this experiment we consider a time-varying offered load. The motivation here
is to increase the potential for resource stealing, in order to study the effectiveness

An Experimental Study of Probing-Based Admission Control 59

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

Bandwidth of Epsilon Probes (Kb/s)

Lo
ss

 (
%

)

Data Loss − Class 1
Data Loss − Class 2
Probe Loss − Class 1
Probe Loss − Class 2

Fig. 6. Effect of mismatch between offered load and CBQ weights on data and probe
loss.

of the ε-probing scheme. Specifically, we increase the traffic intensity of class 1
during the experiment at a specific time instant, coinciding with the start of data
collection for the purpose of statistics computation. Before this perturbation, the
offered load is 20% of the link capacity in class 1 and 80% in class 2. Since each
class is assigned a weight of 50%, class 1 will be underloaded and class 2 will be
overloaded. The experiment consists in increasing the offered load of class 1, to
force the bandwidth stealing of already accepted flows from class 2. The offered
load in class 2 corresponds to 64 Kb/s of flow bandwidth and a mean number
of flows ρ of 11. Before the perturbation, the offered load in class 1 corresponds
to 64 Kb/s of flow bandwidth and a mean number of flows ρ of 4.

The probing duration is kept constant at 2 seconds. The model of the traffic
source is CBR in all cases. The target loss ratio of probes and ε-probes is 5%. In
the actual experiment, the increase in traffic intensity of class 1 is implemented
by two traffic generators. Both generators have a constant offered load, but the
second one is only activated later in the experiment. We consider two cases for
the perturbation: the second generator has (i) an arrival rate of 0.5sec−1 and ρ
of 10; (ii) an arrival rate of 0.33sec−1 and also a ρ of 10; the flow bandwidth
is kept at 64 Kb/sec in both cases. The goal is to keep the traffic intensity
approximately constant while increasing the arrival rate. Given that we want to
analyze the transient behavior of the system, i.e., when a perturbation arises,
the length of the experiment was constrained to 200 sec (from the start of the
second generator), to avoid averaging out the stealing effects.

To analyze the results of the experiment we use two performance metrics:
the percentage of wrong decisions and the percentage of stolen bandwidth. The
former is the percentage of flows that are accepted when the bandwidth of all
admitted flows is higher than the link capacity. The latter is the percentage of
bandwidth that is stolen by the admission of new flows when this admission is a
wrong decision. The computation of these metrics is done as follows: whenever
there is a positive admission decision, we calculate the bandwidth occupied by

60 S. Sargento et al.

all admitted flows, based on the number of flows and on the flow’s bandwidth. If
this bandwidth is larger than the link capacity (including the tolerance given by
the loss target), the decision is computed as a wrong decision. In this case, the
difference between the bandwidth of the admitted flows and the link capacity is
the stolen bandwidth.

0 5 10 15 20
0

5

10

15

20

25

30

35

40

ε −Probes Bandwidth (Kb/s)

W
ro

ng
 A

cc
ep

ta
nc

e
D

ec
is

io
ns

 (
%

)

λ=0.5, µ=0.05
λ=0.33, µ=0.033

(a)

0 5 10 15 20
0

1

2

3

4

5

6

ε −Probes Bandwidth (Kb/s)

S
to

le
n

B
an

dw
id

th
 (

%
)

λ=0.5, µ=0.05
λ=0.33, µ=0.033

(b)

Fig. 7. Effect of time-varying offered load on (a) wrong decisions and (b) stolen band-
width.

Figure 7(a) and (b) show that without ε-probing the percentage of wrong
decisions and of stolen bandwidth is very high (wrong decisions are 38% with
the first perturbation and 20% with the second one; stolen bandwidth is more
than 5% in the first perturbation and almost 2% in the second one). This is
due to resource stealing, when class 1 recovers its bandwidth after the system’s
perturbation. Both metrics decrease rapidly with the ε-probe bandwidth: with
only 2 Kb/sec the stolen bandwidth values decrease almost to one half, and
with 10 Kb/sec (less than 1/6 of the bandwidth of admitted flows) the stealing
is almost insignificant. A comparison of the two curves in each figure shows that
a larger arrival rate provokes more stealing. Thus, the results of this experiment
where resource stealing is intentionally aggravated, clearly show that ε-probing
is able to eliminate this problem.

7 Conclusions

Placing admission control functions at the network’s endpoints has been pro-
posed as a mechanism for achieving per-flow quality of service in a scalable way.
In this paper we have described an experimental system with a DiffServ architec-
ture that includes both probing and ε-probing admission control algorithms. The
ε-probing technique was introduced to overcome the so-called resource stealing
problem that impairs multi-class systems based on simple probing. A number of

An Experimental Study of Probing-Based Admission Control 61

experiments was carried out to study the performance of these admission con-
trol algorithms. The results clearly show that the probing schemes are able to
accurately perform admission control while achieving high utilization. Moreover,
they also show that in multi-class environments such as DiffServ, ε-probing can
eliminate the resource stealing problem. For example, it was shown that the
resource stealing problem can be virtually eliminated by using ε-probes with a
bandwidth higher than 1/6 of the flows’ bandwidth. Thus, the ε-probing scheme
is able to provide an effective solution to support per- flow QoS without signaling
and without maintaining any flow state at core routers.

References

1. G. Bianchi et al. Throughput analysis of end-to-end measurement-based admission
control in ip. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March
2000.

2. K. Nichols et al. Two-bit differentiated services architecture for the Internet. In-
ternet RFC 2638, 1999.

3. L. Breslau et al. Comments on the performance of measurement-based admission
control algorithms. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel,
March 2000.

4. L. Breslau et al. Endpoint admission control: Architectural issues and performance.
In Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, August 2000.

5. L. Zhang et al. Rsvp: A new resource reservation protocol. In IEEE Network,
volume 7, pages 8–18, September 1993.

6. S. Blake et al. An architecture for differentiated services. Internet RFC 2475, 1998.
7. S. Sargento et al. Resource stealing in endpoint controlled multi-class networks.
In Proceedings of International Workshop on Digital Communications (Invited Pa-
per), Taormina, Italy, September 2001.

8. V. Elek et al. Admission control based on end-to-end measurements. In Proceedings
of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

9. R. Gibbens and F. Kelly. Distributed connection acceptance control for a connec-
tionless network. In Proceedings of ITC ’99, Edinburgh, UK, June 1999.

10. E. Knightly and N. Shroff. Admission control for statistical qos: Theory and prac-
tice. In IEEE Network, volume 13, pages 20–29, March 1999.

11. J. Wroclawski. Specification of the controlled-load network element service. Internet
RFC 2211, 1997.

	Introduction
	Experimental System Architecture
	Traffic Generator Module
	Probing Module
	Experimental Set-Up
	Experimental Results and Discussion
	Experiments with two CoS and a Constant Offered Load
	Experiment with two CoS and a Time-Varying Offered Load

	Conclusions

