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Abstract. Atomic Layer Deposition is one step in the industrial man-
ufacturing of semiconductor chips. It is mathematically modeled by the
Boltzmann equation of gas dynamics. Using an expansion in velocity
space, the Boltzmann equation is converted to a system of linear hy-
perbolic equations. The discontinuous Galerkin method is used to solve
this system. The speedup becomes near-perfect for the most complex
two-dimensional cases. This demonstrates that the code allows for ef-
ficient parallel computation of long-time studies, in particular for the
three-dimensional model.

1 Introduction

Atomic Layer Deposition (ALD) provides excellent film thickness uniformity
in high aspect ratio features found in modern integrated circuit fabrication.
In an ideal ALD process, the deposition of solid material on the substrate is
accomplished one atomic or monolayer at a time, in a self-limiting fashion which
allows for complete control of film thickness. The ALD process is appropriately
modeled by a fully transient, Boltzmann equation based transport and reaction
model [1,4,6].

The flow of the reactive gases inside an individual feature of typical size less
than 1 µm on the feature scale is described by the Boltzmann equation [1], stated
here in dimensionless form as

∂f

∂t
+ v · ∇xf =

1
Kn

Q(f, f). (1)

The unknown variable is the density distribution function f(x, v, t), that gives
the scaled probability density that a molecule is at position x = (x1, x2) ∈
Ω ⊂ IR2 with velocity v = (v1, v2) ∈ IR2 at time t ≥ 0. The velocity inte-
gral of f(x, v, t) gives the dimensionless number density of the reactive species
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c(x, t) =
∫

f(x, v, t) dv. The left-hand side of (1) describes the convective trans-
port of the gaseous species while the right-hand side of the Boltzmann equation
models the effect of collisions among molecules. For feature scale models the
Knudsen number Kn is large and hence the transport is free molecular flow.
Mathematically, this corresponds to a special case of (1) with zero right-hand
side. The stated model is two-dimensional, a generalization to three dimensions
is straightforward and first results are presented in [9].

Initial coarse and fine meshes of the domain Ω for the feature scale model are
shown in Fig. 1. The fine mesh contains approximately twice as many elements
as the coarse mesh. The meshes are slightly graded from top to bottom with a
higher resolution near the wafer surface.

We model the inflow at the top of the domain (x2 = 0.25) by prescribing a
Maxwellian velocity distribution. We assume specular reflection on the sides of
the domain (x1 = −0.25 and x1 = +0.25). Along the remainder of the boundary,
which represents the wafer surface of the feature, a reaction model is used to de-
scribe the adsorption of molecules to the surface and diffusive emission describes
the re-emission of molecules from the surface [1,4,6]. Initially, no molecules of
the reactive species are present in the domain.

2 The Numerical Method

To numerically solve (1) with the given boundary conditions and initial con-
dition, the unknown f for the reactive species is expanded in velocity space
f(x, v, t) =

∑K−1
k=0 fk(x, t)ϕk(v), where the ϕk(v), k = 0, 1, . . . , K − 1, form an

orthogonal set of basis functions in velocity space with respect to some inner
product 〈·, ·〉C . Using a Galerkin ansatz and choosing the basis functions judi-
ciously, the linear Boltzmann equation (1) is converted to a system of linear
hyperbolic equations

∂F

∂t
+A(1) ∂F

∂x1
+A(2) ∂F

∂x2
= 0, (2)

where F (x, t) = (f0(x, t), ..., fK−1(x, t))T is the vector of coefficient functions.
A(1) and A(2) are K × K diagonal matrices with components A(�) = diag(A(�)

kk )
(� = 1, 2) [5]. Therefore, each equation for component function fk(x, t)

∂fk

∂t
+ ak · ∇xfk = 0 (3)

is a hyperbolic equation with constant velocity vector ak = (A(1)
kk , A

(2)
kk )

T given by
the diagonal elements of A(1) and A(2). Note that the equations remain coupled
through the reaction boundary condition at the wafer surface [6].

This system is then solved using the discontinuous Galerkin method (DGM)
[2]. In the implementation in the code DG [7], we choose to use a discontin-
uous L2-orthogonal basis in space and an explicit time-discretization (Euler’s
method). This leads to a diagonal mass matrix so that no system of equations
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has to be solved. The degrees of freedom are the values of the K solution com-
ponents fk(x, t) on all three vertices of each of the Ne triangles. Hence, the
complexity of the computational problem is given by 3KNe; it is proportional
both to the system size K and to the number of elements Ne.

The domain is partitioned in a pre-processing step, and the disjoint subdo-
mains are distributed to separate parallel processors. The code uses local mesh
refinement and coarsening and dynamic load-balancing using the Zoltan library
as load balancer [3] and the graph partitioning software ParMETIS [8].

3 Results

Numerical studies were conducted for three different velocity discretizations.
The demonstration results presented below were computed using four and eight
discrete velocities in each spatial direction, respectively; hence, there are K = 16
and K = 64 equations, respectively. In each case, simulations were run for the
two different initial meshes of Fig. 1. The solutions are presented in [4,6].

The studies were performed on a 8-processor cluster of four dual Linux PCs
with 1000 MHz Pentium III processors with 256 KB L1 cache and 1 GB of RAM
per node. The nodes are connected by 100 Mbit commodity cables on a dedicated
network, forming a Beowulf cluster. Files are served centrally from one of the
nodes using a SCSI harddrive.

Figure 2 shows observed speedup for up to eight processes for the various
numerical studies conducted; the speedup measures the improvement in wall-
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Fig. 1. (a) Coarse initial mesh, (b) fine initial mesh.
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Fig. 2. Observed speedup for (a) coarse mesh / K = 16, (b) fine mesh / K = 16,
(c) coarse mesh / K = 64, (d) fine mesh / K = 64.

clock time of the parallel code using p processes over the serial version of the
code. The first row of plots in the figure corresponds to four discrete velocities
(K = 16), and the second row corresponds to eight discrete velocities (K = 64).
The left-hand column and right-hand column of Fig. 2 correspond to the coarse
initial mesh and fine initial mesh of Figs. 1(a) and (b), respectively. Figure 2(a)
compares the speedup for different levels of refinement of the initial coarse mesh
with K = 16. Observe the decay in speedup without refinement due to the small
number of degrees of freedom per process. Thus, as the maximum allowable
refinement level increases and, consequently, the number of degrees of freedom
increases, the speedup improves. Figures 2(a) and (b) demonstrate speedup for
K = 16 for the two initial meshes. The finer mesh contains approximately twice
as many elements as the coarse mesh; hence, the number of degrees of freedom
increases by a factor of two. A comparison of the respective mesh refinement
levels between the two plots shows that speedup improves because the degrees of
freedom for the finer mesh is larger than for the coarse mesh. Figures 2(a) and (c)
display speedup for the coarse mesh for the two studies K = 16 and K = 64. The
finer velocity discretization in Fig. 2(c) introduces additional degrees of freedom
which again improves speedup. Figure 2(d) combines the effect of the fine initial
mesh and the finer velocity discretization. Observe that this is the most complex
numerical study and thus possesses the best speedup.
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4 Conclusions

It is demonstrated that the observed speedup improves with increasing levels
of complexity of the underlying numerical problem. The studies were conducted
using a two-dimensional model up to final times that are small compared to
the time scales used for the process in industrial practice. The requirement to
compute for long times, coupled with desired accuracy necessitates the use of
an optimal parallel algorithm. While the demonstrated speedups are already ex-
tremely useful to conduct studies using the two-dimensional model, they become
crucial in cases, when a three-dimensional model has to be used.
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