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Abstract. This paper presents a new procedure to estimate the diffu-
sion tensor from a sequence of diffusion-weighted images. The first step
of this procedure consists of the correction of the distortions usually in-
duced by eddy-current related to the large diffusion-sensitizing gradients.
This correction algorithm relies on the maximization of mutual informa-
tion to estimate the three parameters of a geometric distortion model
inferred from the acquisition principle. The second step of the proce-
dure amounts to replacing the standard least squares based approach by
the Geman-McLure M-estimator, in order to get rid of outlier related
artefacts. Several experiments prove that the whole procedure highly
improves the quality of the final diffusion maps.

1 Introduction

There is currently considerable interest in the use of MRI for imaging the appar-
ent diffusion of water in brain tissues [13]. When anisotropy of the 3D diffusion
process is of interest, for instance for fiber bundle tracking [18], a symmetric
diffusion tensor D has to be calculated for each voxel from a series of diffusion-
weighted volumes [3, 2]. Each such volume is acquired with a different applied
diffusion-sensitizing gradient [21]. These gradients are applied in order to vary a
symmetric matrix b (s/mm2) that depends on the gradient direction, strength
and timing [15]. The diffusion-sensitizing gradient affects the signal intensity of
any given voxel in a manner that can be described by the linear equation:

ln S(b) = ln S(0)−Dxxbxx − 2Dxybxy − 2Dxzbxz −Dyybyy − 2Dyzbyz −Dzzbzz,
(1)

where S denotes the signal of the selected voxel. When a sufficient number of
different b matrices is used, the diffusion tensor D can be estimated.

Such calculations are simple if each voxel in the different volumes represents
the same point in the anatomy of the subject, but can be impractical if different
volumes of the series are distorted relative to each other. Diffusion-weighted
images, however, are often acquired using Echo-Planar Imaging (EPI), to reduce
acquisition time. Unfortunatelly, this fast acquisition scheme is highly sensitive
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to eddy currents induced by the large diffusion gradients [8]. These eddy currents
can cause significant distortions in the phase-encoding direction where the image
bandwidth is quite low (see Fig. 1). Since the degree and nature of this artefact
typically vary both with the strength and orientation of the diffusion-sensitizing
gradient, distortions can dramatically change the direction of highest diffusion
supposed to correspond to fiber direction.

The methods for reducing the effects of eddy currents may be divided into
four categories. The first one simply consists of modifications of the gradient
sequences [1]. This approach, however, seems unsufficient to get completely rid
of artefacts. Other approaches are retrospective and can be considered as reg-
istration methods. Some of them which rely on MR physics require additional
experimental data [11]. Others simply use a distortion geometric model inferred
from the acquisition principle, which leads to estimate a few parameters using
a standard similarity measure like cross-correlation [8, 6, 4]. The last kind of
approaches stem from recent progress in the definition of robust similarity mea-
sures. To our knowledge, such approaches have only been applied in functional
MRI to correct for distortions induced by susceptibility artefacts in EPI, using a
free deformation model with a high number of parameters [12, 9]. In this paper we
propose to estimate the few parameters of the distortion geometric model from
the mutual information in order to achieve a robust correction. This approach
largely improves previous ones. Simpler similarity measures, indeed, seem not
sufficient to perfectly take into account the complex dependencies embedded in
equation 1. Moreover, the fact that a priori knowledge on the deformation main
effects allows us to estimate only three paramaters per slice highly simplifies the
optimization process.

This paper proposes a second improvement of the standard calculation of the
diffusion tensor D. The linearity of Eq. 1 usually leads to a least squares based
regression method [2]. This approach, however, is not robust to the various kinds
of noises that can be observed in diffusion-weighted data [5]. Non Gaussian noise
can stem for instance from physiological motions (brain beat), subject motions or
residual distortions. While careful acquisition schemes including cardiac gating
and navigator echo may reduce some of these problems, some weaknesses of the
tensor diffusion model lead to other regression problems: each voxel includes
several water compartments endowed with different diffusion processes that are
mixed up in the data [7]. Hence, in order to overcome the influence of outliers
on the tensor estimation, we propose the use of a standard robust M-estimator
[16]. A comparison of the behaviour of both regression methods in the presence
of various levels of corrupted data prove the interest of the robust approach.

2 Distortion Correction

In the following, echo-planar diffusion-weighted images were acquired in the
axial plane. Blocks of eight contiguous slices were acquired each 2.8mm thick.
Seven blocks were acquired covering the entire brain corresponding to 56 slice
locations. For each slice location 31 images were acquired; a T2-weighted image
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13mT/m (-1,1,0) 22mT/m (-1,1,0)no gradient

Fig. 1. Example of eddy-current related distortions (8mm in the worst case)

translation shearstretch

Fig. 2. The simple geometric model of eddy-current related distortions

with no diffusion sensitization followed by 5 diffusion sensitized sets (b values
linearly incremented to a maximum value of 1000s/mm2) in each of 6 non-
colinear directions. In order to improve the signal to noise ratio this was repeated
4 times, providing 124 images per slice location. The image resolution was 128
x 128, field of view 24cm× 24cm, TE = 84.4ms, TR = 2.5s

For each slice, all acquisitions are aligned with the first image of the series.
For convenience we use the notation that the image is in the XY plane, and the
phase-encoding direction lies along Y. Simple considerations about MR physics
lead to the following distortion model [8]:

– A residual gradient in the slice-encoding direction Z produces uniform trans-
lation along Y;

– A residual gradient in the frequency-encoding direction X produces a shear
parallel to Y (a translation linearly related to X);

– A residual gradient in the phase-encoding direction Y produces a uniform
scaling in Y direction.

Hence, the geometric model (see Fig. 2) can be written for each column X as:

Y ′ = SY + T0 + T1X. (2)

An additional global multiplicative correction by 1
S has to be applied to the slice

intensities, which is done after estimation of (S, T0, T1).
To take into account the complex dependencies between the target image,

which is a standard T2-weighted image, and the diffusion-weighted images, the
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Fig. 3. Orthogonal slices of the mutual information crossing at the global maxi-
mum.

similarity measure used to estimate the optimal (S, T0, T1) is the mutual infor-
mation (MI) [10, 14]. Since the two images to be aligned are 128x128 slices to
be compared to the usual 3D situation, a Parzen window is used to get a robust
estimation of the joint intensity distribution. This Parzen window is a truncated
Gaussian kernel sufficient to smooth the joint histogram. This approach turned
out to be crucial to prevent the maximization algorithm to be trapped in MI
local maxima. Hence, estimation of MI(S, T0, T1) consists of a linear resampling
of the image to be aligned according to Eq. 2, followed by the application of the
Parzen window to the joint histogram. Then MI can be computed from:

MI(S, T0, T1) =
M−1∑

it=0

M−1∑

ia=0

p(it, ia) log
p(it, ia)

p(it)p(ia)
,

where M is the sampling of the joint probability distribution (in practice M =
64), it the intensity in the target image and ia the intensity in the image to
be aligned. The marginal probabilities p(it) and p(ia) are computed by row and
column summation.

Since 123 realignments have to be performed for each slice of the volume, a
fast optimization scheme is required. Fortunately, the use of a Parzen window
leads to a rather smooth MI landscape around the global maximum (see Fig. 3).
In some cases, several maxima have been observed near the global one. In such
situations, however, we could not claim that the global maximum was a better
solution than the surrounding maxima. Hence, Powell algorithm has been used
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in the following to maximize MI [19]. For each new image, the initial position is
(1,0,0), namely the no distortion situation.
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Fig. 4. Comparison between mutual information and correlation ratio for one
gradient direction: (1,1,0). Reproducibility of the correction process across the
four repetitions in three gradient directions, (1,1,0), (1,0,1) and (0,1,1), with six
different strengths.

Thanks to the four repetitions embedded in our acquisition process, the ac-
curacy and the robustness of the correction process can be evaluated. A first
experiment consists of comparing the results obtained using mutual information
with the results obtained using another similarity measure: the correlation ratio
[20]. While both methods have given similar results, the variability across the
four repetitions was higher for the correlation ratio (see Fig. 4). Hence, mutual
information has been chosen as more adapted to diffusion-weighted images.
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target raw image correction

Fig. 5. Example of distortion correction

In general, the correction was reproducible across the four repetitions (see
Fig. 4). The largest variability was observed for the translation parameter T0,
which can be understood from the shape of MI landscape (see Fig. 3). MI
isophotes, indeed, are rather cylindrical with a T0 oriented axis along which
some local maxima can be observed. An interesting result is the fact that the
highest variability is obtained for the three repetitions of the pure T2-weighted
target (no sensitizing gradient) for which S = 1, T1 = 0 but T0 �= 0. This ob-
servation tends to prove that eddy currents have long term trends that corrupt
several consecutive acquisitions. Finally, the estimated distortions fit well with
the physical interpretation mentioned above: The xy and yz gradients induce a
scaling, the xz and yz gradients induce a global translation, and the xy and xz
gradients induce a shearing.

3 Robust Tensor Estimation

Estimation of the diffusion tensor is done from linear equation 1. While tradi-
tion and ease of computation have made the least squares method the popular
approach for this regression analysis [2], this method becomes unreliable if out-
liers are present in the data. Robust regression methods can be used in such
situations [16]. The M-estimators are the more popular robust methods. These
estimators minimize the sum of a symmetric, positive-definite function ρ(εi) of
the residuals εi, with a unique minimum at εi = 0. A residual is defined as the
difference between the data point and the fitted value. For the least squares
method ρ(εi) = ε2i . Several ρ functions have been proposed which reduce the
influence of large residual values on the estimated fit. We have chosen one of
the most popular ones, the Geman-McLure estimator ρ(εi) = ε2i

ε2
i
+C2 , where

C = 1.48mediani{‖εi‖}. The M-estimate of the diffusion tensor is obtained by
converting the minimization into an iterated weighted least squares problem.
The initial guess is the solution of the standard least squares.

In order to compare the behaviour of both M-estimators, raw data have been
corrupted with various levels of outliers (of course some actual outliers are also
present in these data). For a given experiment, a percentage P of the 124 images
is modified. For such images, an additional error e is added to each voxel. This
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Fig. 6. Influence of outliers on the number of non positive matrices and on the
direction of highest diffusion.

Fig. 7. Left: raw T2-weighted image. Right: tensor fractional anisotropy [17]
without and with distortion correction and robust regressor. Fractional anisotropy
is a simple ratio which measures the variability between the diffusion tensor
eigenvalues.

error is sampled from a Gaussian distribution whose mean is the mean intensity
inside the brain, and whose standard deviation is a tenth of the mean. Two
measures allow us to assess the effect of these outliers. The first one is the number
of non positive estimated tensors, which have no physical interpretation. Such
situations may occur because no positivity constraint is embedded in the fitting
process. The second measure is the mean angular variation between the direction
of highest diffusion with and without outliers. This direction corresponds to the
tensor eigenvector associated with the largest eigenvalue. The evolution of these
measures relative to the percentage of outliers P is proposed in Fig. 6. The
superiority of the Geman-McLure estimator is straightforward.
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4 Conclusion

This paper has presented a robust procedure to estimate the diffusion tensor
from a sequence of diffusion-weighted images. Further work, however, could still
improve this procedure. For instance, a fitting method including a positivity
constraint on the tensor eigenvalues should be designed. Furthermore, the issue
of distortion correction in the presence of subject motions remains completely
open, like in the case of functional MRI. Nevertheless, our new procedure already
highly improves the quality of the diffusion map which is illustrated by anisotropy
images in Fig. 7.
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