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Public key encryption as used in network communication has been inves-
tigated extensively. The main advantage of the techniques developed in
this area is the potential for secure communication. However, while
public key systems are often effective in preventing a passive saboteur
from deciphering an intercepted message, protocols must be designed to
be secure when dealing with saboteurs who can impersonate users or send
copies of intercepted messages on the public channel. Dolev and Yao [3]
have shown how informal arguments about protocols can lead to errcneous
conclusions, and they have developed formal models of two-party proto-
cols, both cascade protocols and name-stamp protocols. Recall that a
protocol is a set of rules that specify what operators a pair of users,
the sender and the receiver, need to apply in an exchange of messages
for the purpose of transmitting a given plaintext message from the send-
er to the receiver. In terms of their models, Dolev and Yao developed
an elegant characterization of cascade protocols that are secure, a
characterization with conditions that can be checked by inspection.
The problem that is studied in this paper is that of message
authentication in the sense of Diffie and Hellman {2]. How can a user
determine whether the messages received are the correct messages that
comply with the rules of the protocol used ? The security of a proto-
col limits the ability to authenticate messages as shown by Dolev and
Yao [3]. Our goal is to develop a method for message authentication
that allows a user to determine whether the messages he receives actual-
ly comply with the protocol and, in this sense, are free of error. This

method should be based on properties of the protocol itself, not on
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the messages exchanged or on the users. Further, the property of se-
curity should be retained whenever possible.

We call a protocol sender-verifiable if the sender is able to

check whether the reply messages he receives actually comply with the
protocol. Thus, if a protocol is sender-verifiable, then the sender
can detect whether a saboteur has injected improper messages into the

system. Similarly, a protocol is receiver-verifiable if the receiver

can check whether the reply messages received comply with the proto-
col.

The notion of verifiability may also be used as an additional re-
quirement for security. Recall that the power of a potential saboteur
(as described by Dolev and Yao [3]) depends on the fact that in an ex-
change both the sender and the receiver follow the rules of the proto-
col and apply the specified operators to the messages they receive
without checking that the received message itself complies with the
protocol. If the user can check whether the messages received comply
with the protocol before continuing with the exchange, then he can end
the exchange as soon as he detects a message not complying with the
protocol, thus restricting the power of a saboteur.

The main results of this paper are simple characterization theorems
for two-party protocols that are sender-verifiable (resp., receiver-
verifiable). These characterization theorems yield fast algorithms to
determine whether a protocol is sender-verifiable or receiver-verifi-
able.

Our notation is based on that of Dolev and Yao [3].

A cascade protocol has a set of cancellation rules {DXEX =1,
=1 | X is a user}. For every operator word v, let Y be the re-

E,D
sﬁli of applying all possible cancellation rules until there is noth-
ing left to cancel; operator words of the latter type are called ir-
reducible. It turns out that for every operator word y there is a
unique irreducible word y such that for every plaintext message M,
v(M) = Y(M). Further, any two operator words Y4 and Y, are considered
to be equivalent if for all plaintext messages M, Y1(M) = YZ(M). Hence,
Yy and Y, are equivalent if and only if Yy = Yy

Let P = {ai,E. {1 £1is+t, 1s 3% t'} beatwo-party cascade pro-

J
tocol where t' = £t or t' = t-1. For any two distinct users X and Y,
— — - [
let N, (X,Y) = aj(x,Y), sz(X,Y) = ﬁj(X,Y)NZj_](X,Y), 1 €3 s t', and
N21+1(X,Y) = ai+1(X,Y)NZi(X,Y), 1 £ 1 s t-1.

If user X initiates an exchange with user Y to transmit plaintext

message M, the messages exchanged are N](X,Y)(M),NZ(X,Y)(M),...,
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Nt+t.(X,Y)(M). We illustrate this exchange as follows:

X Y

No (X, Y) (M) =M SN, (X,Y) (M)

N, (X,¥) (M)

N, (X,Y) (M)

L
N4(X,Y)(M)

The sender X would like to verify that the receiver Y actually
receives the correct message at each stage. Also, the receiver Y would
like to verify that the sender X receives the correct replies. If both
of these things can be done, then the message authentication procblem
(in the sense of Diffie and Hellman [2]) can be solved. The definition
of verifiability is vague. Clearly, some notion of effective process
is desired. Therefore, we restrict our attention to the following
simpler notions.

}*

A sequence of pairs (u.,vj), 1 £ J s t', with uj, v e

5 ;€ {E4/Ey,D
is a sender-verification sequence for P if for each j, 1 s j s t’',
ujNZ(j—l)(X’Y) = vszj(X,Y). (Here, N0

A sequence of pairs (ui,vi), 1 s i< t, with Ui Vo € {E

(X,Y) is the identity function).

E,,D,} "
X'"TY'TY
is a receiver-verification sequence for P if for each i, 1 £ i < t,

UiNpg - (X ¥) = vl g (X))

The first result can be stated in the following way.

Theorem 1. Let P = {Ei,aj} be a two-party cascade protocol.

(a) If P has a sender-verification sequence, then P is sender-verifi-
able.

(b) If P has a receiver-verification sequence, then P is receiver-

verifiable.

Let us sketch a proof of part (a). Consider the situation where
user X initiates an exchange with user Y in order to transmit the
plaintext message M. For each j 2 1, X wishes to know if the reply
message received is the unique reply that complies with the protocel.
It is assumed that the sender X always remembers the last message
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sz_z(X,Y)(M) received. When a new reply message M' is received, X
tries to determine whether M' is in fact the message sz(X,Y)(M) that
is expected. If the protocol has a sender-verification seguence, then
there exist 4y and vy in {DX,EX,EY}* such that g.sz_z(X,Y) =
vszj(X,Y) and so uszj_z(X,Y)(M) = vszj(X,Y)(M). If the received
message is M', then X can apply £ to M' and compare v_.(M'}) with
uszj_z(X,Y)(M). Now these two bit streams agree if and only if M' is
in fact equal to sz(X,Y)(M), since the equation uszj_z(X,Y) = vjw

has the unigue irreducible solution w = sz(X,Y). Thus, X can deter-

mine whether the reply message M' received at this stage of the ex-
change is in fact the unique reply that complies with the protocol.

Thus, we see that in the case of two-party cascade protocols, the
existence of verification sequences allow both sender and rsceiver to
determine whether the reply messages received actually comply with the
protocol. Now the guestion of whether or not such sequences exist de-
pends on the protocol itself, not on the choice of users, and so this
concept is uniform in the same sense that Dolev and Yao's definitiocn
of the protocol is uniform.

We have characterized those two-party cascade protocols that have
sender-verification (xesp., receiver-verification) sequences. These
characterizations are similar to the characterization of security
given by Dolev and Yao in the sense that the conditions involve pro-
perties of each ai and Ej that can be checked by inspection. We com-
bine the conditions that characterize security with those that char-

acterize the existence of such sequences.

Theorem 2. Let P = {ai,ﬁj | 1 sist, 15 ]st'} bea two-party

cascade protocol. Then the following are equivalent:

(a) P is secure and has both a receiver-verification seqguence and a
sender-verification sequence;

(b) for any two user names X and Y, the following hold:

(1) EX or EY occurs in the word a](X,Y);

P . * _

(i1) for every i 2 2, ai(X;Y) € {EX,EY} 2r ai(X,E% = w1EXw2w3
with Wyr Wiy S {Ey,DX} ) Wy € {EX,EY} , and wy is a prefix

of B;_4(X,Y);
PR . * = L7
(iii) for every j z 1, Bj(X;Y) € {EX,EY} :r Bj(X,g% wiE W, Wy

with W, Wy € {EX,DY} r Wy € {EX,EY} , and w

3 is a pre-
fix of aj(X,Y).

This development is completely constructive. That is, knowing the
existence of a sender-verification sequence for a protocol P allows

us to construct such a seguence.
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Theorem 3. There is a linear time algorithm that on input a two-party

cascade protocol P will halt and output a sender-verification sequence
(resp., receiver-verification seguence) for P if such a sequence exists
and will halt with output "NO" if such a sequence does not exist.

Now we turn to the study of name~-stamp protocols. Let D = {DX |

X is a user} and E = {EX | X is a user}. For each vy € (D U E)*, there

is a unique irreducible Y—] such that YY_1 = 7-11 = 1. In the case of

name~-stamp protocols, there exist other types of functions, the name-
appending, and name-matching functions (see [3]). Let I = {ix | X is
a user}, where each i, is the name-appending function associated with

X

X, and let J = {dx | X is a user}, where each dX is the name-matching
*

function associated with X. Then every operator word in (I U D U E)
has a left inverse and every operator word in (J U D U E)" has a right
inverse. No nontrivial operator word in I* has a right inverse and no
nontrivial operator word in J* has a left inverse. These facts lead

to certain difficulties when we consider the question of verifiability
of name-stamp protocols.

The first problem comes when one tries to extend Theorem 1 to
name-stamp protocols. The definition of a verification sequence
changes in the sense that for a sender-verification sequence, each uj,
vy is taken from the set F; where T, = {DX’EX'EY'iX’iY'dX’dY}’ and
similarly for a receiver-verification sequence. But more importantly,
since there are operator words in (I U J U D U E)* which do not have
left inverses, the argument given in the sketch of the proof of
Theorem 1{(a) fails since equations of the form ¥ = Tw do not neces-
sarily have solutions, let alone unique solutions. In fact, Theorem 1
fails for name-stamp protocols. Therefore we are forced to put an ad-
ditional constraint on the type of verification sequences used.

We make the following notational convention. If vy € (DUEUTIU J)*

has a (two-sided) inverse, then let Y~1 be the unique irreducible

word such that vy | =y 'v=1. If Y€ (DUEUT U D

has only a
y B

one-sided inverse, either right or left, then let v ' be the unique
irreducible word with the appropriate property. Notice that there is
no ambiguity introduced.

The following theorem gives a characterization for name-stamp
protocols that are sender-verifiable where the verifiability is car-

1
ried out by a strong sender-verification seguence {(uj,vj)}§=1, i.e.,

each vj is left~invertible. Thus, this characterization will allow
the argument used to prove Theorem 1(a) to carry over to name-stamp
protocels.
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Theorem 4. Let P = {&.,B. | 1s1is+t,1s 3 s t') beatwo-party
name-stamp protocol, and let X and Y be any two users. Then P has a

strong sender-verification seguence {(uj,vj)}:l if and only if the

following conditions hold: for each j 2 1, let B.(X,Y)aj(X,Y) = WyW,
sz_z(X,Y) = w51w3, and sz(X,Y) = w,w, where w, is right-invertible.

Let z be the longest common suffix of w, and w2 , let w, = £.£f_2z where

1 1 172

= ; * -1 =

f,| 1 or f1 ends in DY and f € FX’ and let w2 = 949,2 where 94 €
(D v {EX} U D and g, = 1 or g2 beginsg in E,. Then either

(a) g, = 1 and f1 € (D U {B }) , or

(&) £,.£, E(DU{E}) andgze(EU{D}UI)

The conditions in Theorem 4 are such that for any name-stamp pro-
tocol P one can check in linear time whether P has a strong sender-
verification sequence {(uj'vj)}§;1' Further, we have the analogue of
Theorem 3.

Theorem 5. There is a linear time algorithm that on input a two-party
name-stamp protocol P will halt and output a strong sender-verifica-

tion sequence for P if such a sequence exists and will halt and out-

put "NO" otherwise.

Theorems 4 and 5 are concerned with sender-verifiability. How-
ever the notion of receiver-verifiability is essentially isomorphic
and the analogous theorems also hold.

The reader may question why we have not stated our characteriza-
tion theorems in terms of name-stamp protocols that are secure, simi-
lar to Theorem 2. Not only is there no known characterization of se-
cure name-stamp protocols of the same type as the characterization of
secure cascade protocols given by Dolev and Yac, in fact we have shown
that no such characterization can exist [1]

Finally, we consider one other aspect of these models for proto-
cols. The protocols discussed so far can be called symmetric since for
every user X, the encryption function composed with the decryption
function yields the identity, i.e., EXDX = 1. By definition of decryp-
tion, the decryption function composed with the encryption function
yields the identity, i.e., DXEX = 1. There are valid reasons for con-
sidering protocols that are nonsymmetric in the sense that for every
user X, EXDx + 1 (while DXEX = 1). We have developed the entire theory
of nonsymmetric protocols in terms of the properties of security and
verifiability and have obtained results similar to those reported in

this paper.
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