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Abstract. We extend the self-organizing map (SOM) in the form as
proposed by Heskes to a supervised fuzzy classification method. On the
one hand, this leads to a robust classifier where efficient learning with
fuzzy labeled or partially contradictory data is possible. On the other
hand, the integration of labeling into the location of prototypes in a
SOM leads to a visualization of those parts of the data relevant for the
classification.

1 Introduction

The self-organizing map (SOM) constitutes one of the most popular data min-
ing and visualization methods, mapping a given possibly high-dimensional data
set nonlinearly onto a low-dimensional regular lattice in a topology-preserving
fashion [10]. It can be taken as an adaptive unsupervised learning scheme for
prototype based vector quantization with the additional feature of topographic
mapping. Several methods exist to extend the SOM model for supervised classifi-
cation tasks. These approaches range from simple post-labeling to the well-known
counterpropagation network [10],[7],[8]. However, all these methods have in com-
mon that the locations of the prototypes in the data space remain unchanged
by the subsequent determination of the prototype labels.

In the following we will propose an extension of the SOM such that it can
be used as a prototype based classification approach. Thereby, the position of
the prototypes is explicitly influenced by the classification task. In this way a
combination of statistical and class properties triggers the prototype and the
related label learning. The learning rules for prototypes as well as prototype
labels are obtained from a cost function which is a combination of a classifi-
cation error and the energy function of the SOM according to the formulation
introduced by Heskes [9]. Thereby, the class information of the data may be
fuzzy. The resulting map allows a visualization of the classification process by
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means of the properties of topology preserving mapping of SOMs, which leads to
a better understanding of the classification scheme. Further, metric adaptation,
as known from learning vector quantization [4],[3], can be easily incorporated
into this approach to improve its flexibility.

2 The Self-Organizing Map

As mentioned above, SOMs can be taken as unsupervised learning of topographic
vector quantization with a topological structure (grid) within the set of pro-
totypes (codebook vectors). Thereby, roughly speaking, topology preservation
means that similar data points are mapped onto identical or neighbored grid lo-
cations (prototypes), see Fig 1. An exact mathematical definition is given in [12].
Successful tools for assessing this map property are the topographic function and
the topographic product [12],[1].

There exists a wide range of applications in pattern recognition ranging from
spectral image processing to bioinformatics. The mathematics behind the orig-
inal model as proposed by Kohonen is rather complicated, particularly due to
the lack of an underlying cost function for continuous data distributions. How-
ever, Heskes proposed a minor variant of the original algorithm which usually
leads to the same results as the original SOM but for which a cost function can
be established [9]. We will base our model on this formulation.

Fig. 1. Illustration of tropographic mapping by SOMs. A continuous change in the
input space V leads to a representation by weight vectors, the neurons of which are
neighbored in the grid space A.
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Assume data v ∈ V are given distributed according to an underlying distribu-
tion P (V). A SOM is determined by a set A of neurons/prototypes r equipped
with weight vectors wr ∈ R

d and arranged on a lattice structure which deter-
mines the neighborhood relation N(r, r′) of neuron r and r′. Denote the set of
neurons by W = {wr}r∈A. The mapping description of a trained SOM defines
a function

ΨV→A : v �→ s (v) = argmin
r∈A

∑

r′∈A

hσ(r, r′)ξ (v,wr′) . (1)

where

hσ(r, r′) = exp
(

N(r, r′)
σ

)
(2)

determines the neighborhood cooperation with range σ > 0. ξ (v,w) is an ap-
propriate distance measure, usually the standard Euclidean norm

ξ (v,wr) = ‖v − wr‖ = (v − wr)
2
. (3)

However, here we chose ξ (v,w) to be arbitrary supposing that it is a differen-
tiable and symmetric function which measures some similarity. In this formula-
tion, an input stimulus is mapped onto that position r of the SOM, where the
distance ξ (v,wr) is minimum, whereby the average over all neurons according
to the neighborhood is taken. We refer to this neuron s(v) as the winner.

During the adaptation process a sequence of data points v ∈ V is presented to
the map representative for the data distribution P (V). Each time the currently
most proximate neuron s(v) according to (1) is determined. All weights within
the neighborhood of this neuron are adapted by

�wr = −εhσ (r, s(v))
∂ξ (v,wr)

∂wr
(4)

with learning rate ε > 0. This adaptation follows a stochastic gradient descent
of the cost function introduced by Heskes [9]:

ESOM =
1

2C(σ)

∫
P (v)

∑

r

δs(v)
r

∑

r′
hσ(r, r′)ξ( v,wr′)dv (5)

were C (σ) is a constant which we will drop in the following, and δr′
r is the usual

Kronecker symbol checking the identity of r and r′.
One main aspect of SOMs is the visualization ability of the resulting map due

to its topological structure. Under certain conditions the resulting non-linear
projection ΨV→A generates a continuous mapping from the data space V onto
the grid structure A. This mapping can mathematically be interpreted as an
approximation of the principal curve or its higher-dimensional equivalents [6].
Thus,as pointed out above, similar data points are projected on prototypes which
are neighbored in the grid space A. Further, prototypes neighbored in the lattice
space should code similar data properties, i.e. their weight vectors shoud be close
together in the data space according to the metric ξ. This property of SOMs is
called topology preserving (or topographic) mapping realizing the mathematical
concept of continuity. For a detailed consideration of this topic we refer to [12].
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3 Fuzzy Labeled SOM (FLSOM)

SOM is a well-established model for nonlinear data visualization which, due to
its above mentioned topology preserving properties, can also serve as an ade-
quate preprocessing step for data completion, classification or interpolation. For
high-dimensional data sets, however, the result is often suboptimal if no further
information about the data is present. In such cases, a default model and metric
such as the Euclidean metric often accounts for the fact that only general prop-
erties, but not necessarily the parts relevant for the task at hand are represented.
Often, auxiliary data in the form of (possibly partial or contradictory) labels are
available. In this case, SOM can be used for a preprocessing step in classification
by means of posterior labeling. Here, we seek for an integration of the label in-
formation such that the prototype locations are determined with respect to the
auxiliary data. On the one hand, this improves the classification result if we are
interested in supervised classification. On the other hand, information relevant
for the classification can be visualized by means of the underlying SOM topology
adapted towards the labeling.

Assume training point v is equipped with a label vector x ∈ [0, 1]N(c) whereby
the component xi of x determines the assignment of v to class i for i = 1, . . . ,
N(c). Hence, we can interprete the label vector as probabilistic or possibilistic
fuzzy class memberships. Accordingly, we enlarge each prototype vector wr of
the map by a label vector yr ∈ [0, 1]N(c) which determines the portion of neuron
r assigned to the respective classes. During training, prototype locations wr and
label vectors xi are adapted according to the given labeled training data. For
this purpose, we extend the cost function of the SOM as defined in (5) to a cost
function for fuzzy-labeled SOM (FLSOM) by

EFLSOM = (1 − β) ESOM + βEFL (6)

where the factor β ∈ [0, 1] is a balance factor to determine the influence of the
goal of clustering the data set and the goal of achieving a correct labeling. One
can simply choose β = 0.5, for example. As above, ESOM measures the quanti-
zation of the map taking topological constraints into account. EFL measures the
error of the classification. We choose

EFL =
1
2

∫
P (v)

∑

r

gγ (v,wr) (x − yr)
2
dv (7)

where gγ (v,wr) is a Gaussian kernel describing a neighborhood range in the
data space:

gγ (v,wr) = exp
(
−ξ (v,wr)

2γ2

)
. (8)

This choice is based on the assumption that data points close to the prototype
determine the corresponding label if the underlying classification is sufficiently
smooth. Note that gγ (v,wr) depends on the prototype locations, such that EFL

is influenced by both wr and yr, and an adaptation yields to a different location
of prototypes which is also influenced by the labels.
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We obtain the update rules by taking the derivatives: Labels are only influ-
enced by the second part EFL, which yields

∂EFL

∂yr
= −

∫
P (v) gγ (v,wr) (x − yr) dv (9)

and the corresponding learning rule

�yr = εlβ · gγ (v,wr) (x − yr) (10)

with learning rate εl > 0. This yields to a weighted average of the data fuzzy
labels of those data close to the associated prototypes. However, in comparison
to the usual SOM the receptive fields are different because the prototype update
is determined by the gradient of (6) which yields ∂ESOM

∂wr
+ ∂EFL

∂wr
where

∂EFL

∂wr
= − 1

4γ2

∫
P (v) gγ (v,wr)

∂ξ (v,wr)
∂wr

(x − yr)
2
dv (11)

which takes the accuracy of fuzzy labeling into account for the weight update.
The update rule for the weights thus becomes

� wr = −ε(1 − β) · hσ (r, s(v))
∂ξ (v,wr)

∂wr
(12)

+εβ
1

4γ2
· gγ (v,wr)

∂ξ (v,wr)
∂wr

(x − yr)
2
.

As mentioned above, unsupervised SOMs generate a topographic mapping
from the data space onto the prototype grid under specific conditions. If the
classes are consistently determined with respect to the varying data, one can ex-
pect for supervised topographic FLSOMs that the labels become ordered within
the grid structure of the prototype lattice. In this case the topological order of
the prototypes should be transferred to the topological order of prototype labels
such that we have a smooth change of the fuzzy probabilistic class labels between
neighbored grid positions.

4 Relevance Learning

As mentioned above, ξ (v,wr) is often chosen as squared Euclidean metric such
that the term ∂ξ(v,wr)

∂wr
becomes −2(v−wr). However, the integration of adaptive

relevance factors (metric parameters) seems particularly interesting because of
an increased flexibility and interpretability of the model with almost the same
cost as for the standard metric [5]. Generally, we consider a parametrized dis-
tance measure ξλ(v,w) with a parameter vector λ = (λ1, . . . , λM ) with λi ≥ 0
and normalization

∑
i λi = 1. The idea of relevance learning is to optimize the

relevance factors λ of the distance measure with respect to the classification task
[4],[3], i.e. we consider ∂EFLSOM

∂λl
. Formal derivation yields

∂EFLSOM

∂λl
= (1 − β)

∂ESOM

∂λl
+ β

∂EFL

∂λl
(13)



FLSOM with Label-Adjusted Prototypes 51

with
∂ESOM

∂λl
=

1
2

∫
P (v)

∑

r

δs(v)
r

∑

r′
hσ(r, r′) · ∂ξλ(v,wr)

∂λl
dv (14)

and
∂EFL

∂λl
= − 1

4γ2

∫
P (v)

∑

r

gγ(v,wr)
∂ξλ(v,wr)

∂λl
(x − yr)2dv (15)

for the respective parameter adaptation.
In case of ξλ(v,w) being the scaled Euclidean metric

ξλ(v,w) =
∑

i

λi(vi − wi)2 (16)

(with λi ≥ 0 and
∑

i λi = 1), relevance learning ranks the input dimensions i

according to their relevance for the classification task at hand. Thus, ∂ξ(v,wi)
∂wi

becomes
∂ξ (v,wi)

∂wi
= −2 · Λ · (v − wi) (17)

with diagonal matrix Λ with i-th diagonal entry λi. The corresponding learning
rule for the relevance parameters becomes

� λl = −ελ
1 − β

2

∑

r

hσ(s(v), r) · (vl − (wr)l)2 (18)

+ελ
β

4γ2

∑

r

gγ(v,wr)(vl − (wr)l)2(x − yr)2 (19)

(subscript l denoting the component l of a vector) with learning rate ελ > 0.
This update is followed by normalization to ensure λi ≥ 0 and

∑
i λi = 1.

5 Experiments

5.1 Data Set

In order to demonstrate the practical properties of the proposed algorithm, a
quite challenging application in the field of biological image segmentation has
been chosen. Against the background of spatiotemporal 3-D modelling of cereal
seeds based on up to 2.000 high-resolution images of histological cross-sections
a processing transition from crisp to fuzzy segmentation is desirable.

For this purpose all image pixels are characterized by an extensive feature vec-
tor containing information on color, geometry and symmetry (such as Cartesian
and polar coordinates, distance to centroid, absolute angle to symmetry axis)
and particularly texture according to varying neighborhoods (such as Gaussian
filters, histogram based features) and subsequently sorted into classes by a suit-
able classifier. A number of training pixels are used to set up a classification
system. These training pixels commonly have a unique class label indicating
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that tissue which has previously been assigned by an expert. Since this assign-
ment is often not univocal, due to slight transitions from one biological tissue
to an adjacent one, some fuzzy image segmentation would retain much more bi-
ological knowledge. Further details about the biological background along with
fuzzy segmentation using Fuzzy Labelled Neural Gas (FLNG) can be found in [2].
Tab. 1 summarizes those details of the data set relevant to this paper.

Table 1. Details of the utilized demonstration data set. The classes are non-uniformly
distributed and usually multimodal.

Number of Number of SOM-grid Number of Number of
inputs classes size training examples test examples

170 5 7 × 7 ca. 10.000 > 10.000.000

Fig. 2. Corresponding cutouts of images of the same cross-section illustrating the re-
sults of an automatic fuzzy classification: a) original colour image, b) manually crisply
segmented image, c) manually fuzzily segmented image (see [2]), d) automatic classifi-
cation using FLSOM.
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5.2 Results

Since different areas of the images require more or less fuzzy segmentation, Fig. 2
shows a typical cutout from one complete microscope image containing several
transitions of different tissues. In comparison to the crisp segmented image it can
clearly be seen, that there are areas with predominantly crisp segmentation as
well as areas with mainly fuzzy segmentation. Insofar, the classification system
has to reach two partly contradictory goals, the mapping of structural image
data onto the classes in a fuzzy manner and the observance of the statistical
information about the data distribution. We used the scaled Euclidean distance
(16) and a 7 × 7 SOM grid in the applications, which is chosen according to
an optimal topology preserving mapping (the topographic product is approxi-
mately zero, indicating good topographic mapping [1]). The learning rate was
ε = 0.01, ελ = 0.1ε and the balancing parameter β = 0.6 based on experimen-
tal experiences [2],[13]. Relevance learning was incorporated for optimal metric
adaptation using the scaled Euclidean metric (16).

The resulted segmentation image based on FLSOM classification is depicted
in Fig. 2d. The result shows that the obtained image mixes the original class
information overlaid by the structural information (geometry, symmetries ...)
contained in the original color image Fig. 2a. This impression is emphasized if
the original color image is manually overlaid by the fuzzy classification target
(fuzzy labeled) image Fig. 2c and after this compared to the FLSOM classi-
fication result. This comparison is shown in Fig. 3, which demonstrates a nice
agreement. The segmentation result is comparable to a segmentation obtained by
fuzzy labeled neural gas algoritm (FLNG), which also is a neural map based fuzzy
classification scheme similar to FLSOM [2],[13]. Favored features of SOMs are the
visualization abilities which are also available for FLSOM in advance compared
to FLNG. Here, this property is used for investigation of the class structures. For

Fig. 3. Comparison of manually overlaid color image Fig. 2a and Fig. 2c (left) with
FLSOM resulted classification Fig. 2d (right)
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Fig. 4. Distribution of the fuzzy labels of the prototypes according to the grid locations.
The topological order of labels performing label clusters can easily be detected.

this purpose, the fuzzy labels of prototypes are plotted according to the underly-
ing topological structure of the 7× 7-SOM-grid, Fig. 4. Obviously clear clusters
of labels can be locally detected and separated with a smooth change between
them. Because of the topology preservation of the SOM-mapping (proven by
the topographic product) we can conclude here that a continuos change in the
data space leads to a continuos change in the label space and hence classification
decision.

Additionally, the adapted relevance profile of the scale parameters λi of the
scaled Euclidean metric (16) may offer new insights for further investigations, see
Fig. 5.This particularly concerns the optimization of the feature vector currently
used for the segmentation and the network training, respectively. From the rel-
evance profile it can be concluded that a rather long feature vector is necessary
to keep all the information required to distinguish between the different tissues
(classes). Nevertheless, the used feature vector is subject to a further optimiza-
tion based on the obtained relevance profiles at different runs. However, this
is not trivial, since several runs at similar classification performance may yield
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Fig. 5. Relevance profile of the values λi for the scaled Euclidean metric used in the
application

different relevance profiles. Generally though, this way FLSOM additionally of-
fers a native and self-contained way to keep itself slim.

6 Conclusions

We presented an extension of the SOM for supervised classification tasks, which
explicitly adapts the prototypes according to the classification task. It is derived
as a gradient descent of a cost function obtained from the SOM formulation
according to the Heskes-approach extended by an additional (balanced) term
assessing the classification ability. In this way the statistical as well as label
properties of the data influence prototype positions and fuzzy label learning.
The visualization abilities of SOMs based on the topology preservation property
of unsupervised SOMs then can be used for visual inspection of the class labels
of the prototypes which may allow a better understanding of the underlying
classification decision scheme.

In future work the connections to the unsupervised clustering in SOMs with
auxiliary data information should be considered [11]. For this purpose one could
interprete the fuzzy class labels as the auxiliary data space.
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