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Abstract. In this paper, two new methods for online signature verifi-
cation are proposed. The methods adopt the idea of the longest common
subsequences (LCSS) algorithm to a kernel function for Support Vec-
tor Machines (SVM). The two kernels LCSS-global and LCSS-local offer
the possibility to classify time series of different lengths with SVM. The
similarity of two time series is determined very accurately since outliers
are ignored. Consequently, LCSS-global and LCSS-local are more robust
than algorithms based on dynamic time alignment such as Dynamic Time
Warping (DTW). The new methods are compared to other kernel-based
methods (DTW-kernel, Fisher-kernel, Gauss-kernel). Our experiments
show that SVM with LCSS-local and LCSS-global authenticate persons
very reliably.

1 Introduction

Authentication of a person’s identity is an everydays issue. Often, signatures are
used for verification. However, in most cases a signature is compared to a single
reference signature with the naked eye only. Electronic, typeface-based tech-
niques (so-called offline signature verification) can easily be outsmarted. Since
authentication by signature is more widely accepted than any other technique
(e.g., fingerprint or iris scan), a signature verification system that ensures a high
level of security must be developed. Biometric signature verification systems that
are based on the dynamics of a person’s signature and not on its image are sub-
stantially more suitable for a reliable authentication (so-called online signature
verification).

Support Vector Machines (SVM) are very popular since a few years. As they
provide very good results for various pattern recognition problems, they also
seem to be a good choice for online signature verification. Compared to most
methods used for signature verification such as Hidden Markov Models (HMM)
or Dynamic Time Warping (DTW), SVM, which are based on the principle of
structural risk minimization, have various advantages such as a convex objective
function with very fast training algorithms. On the other hand, SVM typically
are applied to data sets containing feature vectors of fixed length and not to
problems dealing with time series of variable length such as in online signature
verification. In the following, the terms time series and sequence will be used
equivalently.
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2 Related Work

Only a few researchers in the area of online signature verification apply SVM
as their usage poses a major problem: ”Classic” kernel functions such as linear,
polynomial, or Gauss-kernels require input vectors of fixed length. Since almost
all signatures have different lengths, a way has to be found to deal with input
vectors of different lengths.

One approach is to extract a fixed set of features, such as average velocity,
pen-up time, etc., from each signature and to present these input vectors to
an SVM utilizing kernels as mentioned above (so-called static kernels). This
approach is described in [1]. SVM with classic kernels are also used in [2], but
just for the fusion of two preceding classifiers’ decisions (ensemble technique).

The other approach is to use kernels for sequences (so-called dynamic kernels).
As far as we know, SVM with dynamic kernels have not been applied to online
signature verification yet. Several publications such as [3, 4] provide a survey and
a comparison of various kernel functions that are suitable for time series classifi-
cation. Two categories of kernels can be distinguished: Within the first category
are kernels based on distance measures. [5] introduced the Time Alignment Ker-
nel for handwritten digit recognition. [6, 7, 8] developed kernels based on DTW
for speech recognition and handwritten character recognition. The second cat-
egory comprises kernel functions based on probabilistic models such as HMM
or Gaussian Mixture Models (GMM). [9] introduced the Fisher-kernel which
maps an input sequence onto a score vector with fixed length that is obtained
from the parameters of the underlying probabilistic model. Fisher-kernels are
used for classification of DNA-fragments, speaker-independent classification of
spoken letters, or speaker identification. Another probabilistic kernel based on
the Kullback-Leibler divergence of two GMM was described in [10]. This kernel
was applied to speaker authentication as well as image classification.

3 LCSS-Based Kernels for SVM

3.1 Kernel Functions for Online Signature Verification

Given a binary classification problem L = {(xi, yi)} with class labels yi ∈
{−1, 1}, i = 1 . . . l, an SVM (see, e.g., [14]) classifies a test sample t by
yt = sign

(∑l
i=1 αiyiK(t,xi) + b

)
with parameters αi, b ∈ R. K(·, ·) is a kernel

function which is the inner product of the samples transformed into a higher-
dimensional space. In this feature space, an SVM tries to separate the two classes
linearly. If a kernel function satisfies Mercer’s conditions, the resulting kernel ma-
trix is positive semidefinite, and the objective function that has to be optimized
to determine the αi and b is convex.

HMM are probabilistic models often used for online signature verification.
Kernel functions based on HMM can either be applied to raw data or to features
extracted from those data. In the former case a large number of hidden states is
needed to get reasonable results. The consequence is a slow training phase. In the
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latter case complex pre-processing measures must be applied (e.g., segmentation
of sequences and/or approximation with local models).

Approaches based on distance measures such as DTW can also be used as
kernel functions. However, most of these methods are very sensitive to vary-
ing signal offsets or different ranges. Also, most of these methods do not deal
appropriately with the type of outliers that appears within signatures (e.g., ad-
ditional loops). We need kernel functions that do not require time-consuming
pre-processing and meet our requirements concerning outliers.

3.2 LCSS-Global

In this section, a method that determines the similarity of two sequences with
different lengths is introduced. In contrast to other methods such as DTW, non-
matching subsequences (gaps) of these two sequences are ignored.

Subsequence Similarity: We are given two sequences X = (x1, . . . , xn),
Y = (y1, . . . , ym) with xi, yi ∈ R, n, m ∈ N, n ≤ m and γ, ε ∈ R+ with
γ ≤ 1. The sequences X and Y are called (γ, ε)-similar, if subsequences
X ′ = (xi1 , . . . , xi�γ·n�) and Y ′ = (yj1 , . . . , yj�γ·n�) exist for all k = 1, . . . , �γ ·n�−1
with ik ≤ ik+1 and jk ≤ jk+1, such that yjk

− ε ≤ xik
≤ yjk

+ ε for all
k = 1, . . . , �γ · n�. The parameter γ determines the length of the subsequence of
corresponding data points, ε controls how close (regarding the y-axis) matching
points have to be. An example of two time series matched with LCSS-global is
shown in Fig. 1. Similar points are matched, dissimilar subsequences (gaps) are
ignored. The elements of X ′ and Y ′ are temporally ordered just as in X and
Y , but they may consist of discontiguous fragments of the original sequences.
Sketches for appropriate algorithms that determine such subsequences based on
dynamic programming are set out in [12].

LCSS-Global Similarity: The overall similarity of two sequences X , Y based
on LCSS-global with a user-defined ε ∈ R+ is given by

Simε(X, Y ) = {max γ | X, Y are (γ, ε)-similar}. (1)

Fig. 1. Matching of two time series with LCSS-global
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3.3 LCSS-Local

In LCSS-global, sequences must be rescaled to a common range in order to get
suitable matchings. But, global rescaling may not reflect the similarity of two
given sequences perfectly. LCSS-local allows the application of different local
scaling functions to different subsequences of the time series. Additionally, very
short discorresponding gaps are not ignored if they do not exceed a predefined
length. Longer, discorresponding gaps are regarded as outliers and not matched.
The algorithm is based on the method described in [13] which detects correlations
of two sequences in three steps:

1. Computation of all ε-similar subsequences of a fixed length,
2. Iterative fusion of two subsequences to one longer subsequence, and
3. Determination of the longest common subsequence length.

Atomic Matchings: We are given two sequences S = (s1, . . . , sw) and T =
(t1, . . . , tw) with equal length w ∈ N and ε ∈ R+. S and T are ε-similar if
ti − ε ≤ si ≤ ti + ε for all i = 1, . . . , w. Such a correlation is called an atomic
matching of S and T .

In order to find all atomic matchings of two time series X = (x1, ..., xn),
Y = (y1, ..., ym) with different lengths, they are split into all possible contiguous
subsequences S̃i = (xi, . . . , xi+w−1) and T̃j = (yj , . . . , yj+w−1) with user-defined
length w with i = 1, . . . , n − w + 1 and j = 1, . . . , m − w + 1. Subsequently,
every subsequence S̃i and T̃j is rescaled to a specified interval by linear mapping
functions fi and gj (with fi(x) = aix+ bi and gj(y) = cjy +dj) in order to align
the different ranges (e.g., rescaling to [0, 1]). With these local transformations,
corresponding subsequences can now be found.

The rescaled subsequences Si and Tj are compared pairwise and checked
for ε-similarity. If two subsequences Su and Tv are ε-similar, this is called an
atomic matching (Su, Tv) of length w of the two time series X and Y at points
u, . . . , u + w − 1 on X and v, . . . , v + w − 1 on Y .

Longer Subsequences: Having computed all atomic matchings of a certain
length w, the matching subsequences of X and Y must be fused to longer sub-
sequences. Consider two atomic matchings (Si1 , Tj1) and (Si2 , Tj2) with i1 < i2
and j1 < j2. With length() denoting the length of a (sub-)sequence, these atomic
matchings can be fused to longer subsequences if either the following conditions
1 and 3 or 2 and 3 hold (cf. Fig. 2):

1. The subsequences Si1 and Si2 are nonintersecting on X , that is, i1 +
length(Si1) ≤ i2. Moreover, the distance of two atomic matchings must be
smaller than a given parameter �: i2− i1 + length(Si1) ≤ �. These conditions
must also hold for Ti1 and Ti2 . It should be noticed that the gap between
the two subsequences is included in the longer subsequence.

2. The two atomic matchings (Si1 , Tj1) and (Si2 , Tj2) intersect on both time
series with the same length: d = i1 + length(Si1)− i2 = j1 + length(Tj1)− j2.
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Fig. 2. Construction of longer subsequences

3. The parameters ai, bi, cj and dj used for scaling and translation are approx-
imately equal: |ai − cj | < κ1 and |bi − dj | < κ2, with user-defined κ1, κ2.

Subsequently, longer subsequences can again be fused with other subsequences
already fused as long as conditions 1 and 3 or 2 and 3 hold.

Longest Common Subsequences: Given a set with k pairs of matchings
S = {(S1, T1), . . . , (Sk, Tk)} that has been determined as described above. Now
that subset S′ = {(Sl1 , Tl1), . . . , (Slh , Tlh)} of S must be found for which

– The end points Sli and Tli precede the start points Slj and Tlj on X and
Y , respectively (1 ≤ i < j ≤ h). That is, the corresponding subsequences do
not overlap.

– The total length of all subsequences in this subset
∑h

i=1 length(Sli) +∑h
i=1 length(Tli) is maximal.

With ◦ denoting the sequential composition of two subsequences, the subse-
quences X ′ = Sl1 ◦ . . .◦Slh and Y ′ = Tl1 ◦ . . .◦Tlh are called the longest common
subsequences of X and Y . X ′ and Y ′ may have different lengths.

LCSS-Local Similarity: Let X ′ and Y ′ be the longest common subsequences
of X and Y , then the similarity Simw,ε,�(X, Y ) of X and Y computed with
LCSS-local is given by

Simw,ε,�(X, Y ) =
length(X ′) + length(Y ′)
length(X) + length(Y )

. (2)

3.4 Extension to Multivariate Time Series

Multivariate time series X = (x1, . . . ,xn) and Y = (y1, . . . ,ym) with xi,yi ∈
R

D with D ∈ N (D ≥ 2) can be processed with LCSS-global and LCSS-local
as well. Therefor, Simε(Xl, Yl) or Simw,ε,�(Xl, Yl) (l = 1, . . . , D) are computed
separately for each dimension l. Then, the similarity of the multivariate time
series X and Y is computed by the average of the corresponding similarity
measures.
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3.5 LCSS-Global and LCSS-Local as Kernel Functions

As a kernel function K(·, ·) can be seen as a similarity measure of two samples,
Simε(X, Y ) and Simw,ε,�(X, Y ) can be used as kernel functions:

Kglobal(X, Y ) =
2 · Simε(X, Y ) · min{length(X), length(Y )}

length(X) + length(Y )
, (3)

Klocal(X, Y ) = Simw,ε,�(X, Y ). (4)

Equations (3) and (4) do not define kernel functions that satisfy Mercer’s con-
ditions. I.e., K(·, ·) is not guaranteed to be positive semidefinite.

4 Experiments

The Biometric Smart Pen BiSP (see [15] for details) is a novel ballpoint pen for
the acquisition of biometrical features based on handwriting movements which
does not need a specific writing pad. For the verification of individuals by means
of handwritten signatures the pen is equipped with sensors which measure the
dynamics of pressure on the refill in three dimensions and the finger kinematics
by means of tilt angels of the pen.

4.1 Database and Experimental Setup

For the following experiments, signatures of 71 persons have been recorded with
the BiSP. The number of signatures available for a specific person varies from 6
to 40. In order to provide significant results, reference models are created only
for those persons who provided at least 10 signatures (i.e., 63 persons).

The methods LCSS-global and LCSS-local presented in Section 3 are com-
pared to other kernels, namely:

1. Fisher-kernel based on HMM [9] (Pre-processing: rescaling, 7 hidden states),
2. DTW-kernel [8] (Pre-processing: amplitude normalization and resampling to

person-specific fixed length, standard deviation σ of the Gaussian function:
person-specific), and

3. Gauss-kernel [14] (Pre-processing: amplitude normalization and resampling
to person-specific fixed length, standard deviation σ of the Gaussian func-
tion: person-specific).

For LCSS-global all signatures are rescaled to [0, 1] and ε is set to 0.1. For
LCSS-local no pre-processing is applied. The parameters are set to w = 20,
ε = 0.2, � = 15 and local rescaling to [0, 1] is performed. These settings have
been found empirically.

4.2 Results

The primary objectives of our experiments are the evaluation of SVM with LCSS-
global and LCSS-local applied to online signature verification on the basis of two
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Table 1. Experiment 1: Compari-
son with 3 originals for testing

Kernel Error in %
FRR FAR TER

LCSS-global 3.81 0.24 0.57
LCSS-local 3.92 0.01 0.37
DTW-kernel 4.66 0.66 1.02
Fisher-kernel 14.18 3.79 4.73
Gauss-kernel 35.34 0.10 3.30

Table 2. Experiment 2: Compari-
son with 13 originals for testing

Kernel Error in %
FRR FAR TER

LCSS-global 3.72 0.06 1.16
LCSS-local 3.08 0.00 0.93
DTW-kernel 5.38 0.00 1.63
Fisher-kernel 19.23 4.00 8.60
Gauss-kernel 37.44 0.00 11.32

signature sets with two different numbers of originals used for testing (exper-
iment 1 and 2) and the performance of the proposed methods with varying
numbers of original signatures used for the training (experiment 3).

In experiment 1, a training set containing 7 original signatures and 35 random
forgeries selected randomly from the set of the 70 remaining persons is created
for every person. Additionally, 3 originals and 30 random forgeries are selected
for testing purposes and not used for training. Each of the five kernels is applied
to each of the 63 data sets. Due to the fact that signatures used for training
and testing are selected randomly, this experiment as well as the two following
experiments are repeated 5 times in order to get a statistically more reliable
result. Table 1 shows the average false rejection rates (FRR), the average false
acceptance rates (FAR), and the average total error rates (TER). LCSS-local,
LCSS-global, and the DTW-kernel yield the best results, with LCSS-local pro-
viding the lowest total error rate (TER = 0.37%). Fisher-kernel and Gauss-kernel
seem not to be appropriate.

After this first experiment, the methods are evaluated with a second set of sig-
natures (experiment 2): Therefor, 12 persons are selected who provided at least
20 signatures. 7 originals and 35 random forgeries are chosen for training as in
experiment 1, but here, 13 originals and 30 random forgeries are taken for testing
(see Table 2 for results). Due to the larger number of originals used for testing,
the results are worse than in the first experiment. Again, LCSS-local provides
the best results (TER = 0.93%) followed by LCSS-global and DTW-kernel.

In experiment 3, the number of originals used for training is varied between
3 and 17 and 35 random forgeries are used. For testing, 3 originals and 30
random forgeries are selected. Since LCSS-based methods provided the best
results in experiments 1 and 2, only LCSS-global and LCSS-local are considered
(see Fig. 3 for results). As the number of originals increases with LCSS-global
and LCSS-local, FRR is decreasing rapidly. But in turn, as the variance of
a person’s signatures used for training increases due to the larger number of
originals, FAR increases for both methods, but even faster for LCSS-global. It
can be concluded that a number of seven originals effects a suitable compromise
between FRR and FAR.

In a nutshell: LCSS-global, LCSS-local, and DTW-kernel provide the best
results, with LCSS-local ranking first in each experiment. Fisher-kernels yield
very high error rates just as Gauss-kernels. For a larger set of persons and only
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Fig. 3. Experiment 3: LCSS-global and LCSS-local with increasing number of originals
used for training purposes

a few originals taken for the training of a reference model, LCSS-based methods
are superior, whereas with an increasing amount of originals available for train-
ing purposes, LCSS-global and LCSS-local perform almost equally. But as the
number of originals needed for very good authentication results is lowest with
LCSS-local, it should be preferred.

5 Conclusion and Outlook

In this article, two new kernel functions (LCSS-global and LCSS-local) for SVM
were proposed and applied to online signature verification. The experiments
showed that these methods are capable to authenticate persons very reliable with
LCSS-local providing the best results with only seven originals used for training
purposes. It was also shown that in this particular application LCSS-local,
LCSS-global, and DTW-kernel are superior to Gauss-kernel and Fisher-kernel.

Currently, we develop new time series segmentation and classification methods
for online signature verification and intend to apply the new kernel functions to
other time series classification tasks. To obtain a less biased evaluation of our
methods, we also intend to use skilled forgeries. We also intend to improve our
algorithms to reflect possible correlations between the individual dimensions of
a multivariate time series and to compare the proposed kernels to a personalized
version of the Fisher-kernel or related kernels (i.e., TOP-kernel [16]).
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