
Steerable Semi-automatic Segmentation
of Textured Images�
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Abstract. This paper generalizes the interactive method for region segmenta-
tion of grayscale images based on graph cuts by Boykov & Jolly (ICCV 2001)
to colour and textured images. The main contribution lies in incorporating new
functions handling colour and texture information into the graph representing an
image, since the previous method works for grayscale images only. The suggested
method is semi-automatic since the user provides additional constraints, i.e. s(he)
establishes some seeds for foreground and background pixels. The method is
steerable by a user since the change in the segmentation due to adding or remov-
ing seeds requires little computational effort and hence the evolution of the seg-
mentation can easily be controlled by the user. The foreground and background
regions may consist of several isolated parts. The results are presented on some
images from the Berkeley database.

1 Introduction

Fully automatic image segmentation is still an open problem in computer vision. An
ideal algorithm would take a single image as an input and give the image segmented
into semantically meaningful, non-overlapping regions as the output. However, single
image segmentation is ill-posed problem and the usual result is either over- or under-
segmentation. Moreover, measuring the goodness of segmentations in general is an
unsolved problem. Obtaining absolute ground truth is difficult since different people
produce different manual segmentations of the same scene [8].

There are many papers dealing with automatic segmentation. We mention only the
state-of-the-art work based on normalized cuts [13] for segmenting the image into many
non-overlapping regions. This method uses graph cuts as we do, but a modification is in-
troduced, i.e. normalized graph cuts together with an approximate closed-form solution.
However, the boundaries of detected regions often do not follow the true boundaries of
the objects. The work [14] is a follow-up to [13] where the segmentation is done at
various scales.
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(a) (b) (c)

Fig. 1. Image segmentation of the leopard image at the top with user-specified foreground
(bright/yellow) and background seeds (dark/blue). For the segmentation (a) grayscale [3],
(b) colour, and (c) colour+texture information were used respectively

One possibility to partially avoid the ill-posed problem of image segmentation is to
use additional constraints. Such constraints can be i) motion in the image caused either
by camera motion or by motion of objects in the scene [12, 15, 1], or ii) specifying the
foreground object properties [3, 11, 2].

The motion assumption is used in video matting [12, 15, 1]. The main focus is find-
ing the opacity/transparency of boundary pixels of the foreground object. In our case
we perform binary segmentation, i.e. the pixel can belong either to the foreground or
the background. No fuzzy memberships are allowed.

In this paper we focus on single image segmentation. We follow the idea given
in [3] of interactive segmentation where the user has to specify some pixels belonging
to the foreground and to the background. Such labeled pixels give a strong constraint
for further segmentation based on min-cut/max-flow algorithm given in [4]. However,
the method [3] was designed for grayscale images and thus most of the information
is thrown away. In Fig. 1a, one sees the poor result obtained for a textured image
segmented using only the grayscale information. By reducing the colour image to a
grayscale one, the different colour regions can transform to the same grayscale intensity.
Fig. 1b shows how adding colour information helps to achieve a better result. However,
many regions contain texture (most natural objects). Taking texture into account helps
to improve the final segmentation even more, see Fig. 1c.

The paper [2] uses the segmentation technique [3] as we do. They suggest a method
for learning parameters of colour and contrast models left for the user in the method
in [3]. They use the Gaussian mixture Markov random field framework. However, con-
trary to this paper, they do not handle texture information.

In [16] the spatial coherence of the pixels together with standard local measurements
(intensity, colour) is handled. They propose an energy function that operates simultane-
ously in feature space and in image space. Some forms of such an energy function are
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studied in [6]. In our work we follow a similar strategy. However, we define the neigh-
borhood relation through brightness, colour and texture gradients introduced in [7, 9].

In [11] the boundary of a textured foreground object is found by minimization
(through the evolution of the region contour) of energies inside and outside the region
in the context of the Geodetic Active Region framework. However, the texture infor-
mation for the foreground has to be specified by the user. In [10] the user interaction is
omitted by finding representative colours by fitting a mixture of Gaussian elements to
the image histogram. However, such technique cannot be used for textured images.

The main contribution of this paper lies in incorporating brightness, colour and tex-
ture cues based on the work [7, 9] into the segmentation method [3] based on the max-
imal flow algorithm. Second, we introduce a new penalty function derived through the
Bayesian rule to measure likelihood of a pixel being foreground or background. The
proposed method allows one to segment textured images controlled by user interaction.

The structure of the paper is as follows. In Sec. 2, brightness, colour and texture gra-
dients are briefly described. In Sec. 3, a segmentation based on the graph cut algorithm
is outlined together with the new energy functions. Finally, the results and summary
conclude the work.

2 Boundary Detection

Boundary detection is a difficult task, as it should work for a wide range of images, i.e.
for images of human-made environments and for natural images. Our main emphasis
is put on boundaries at the changes of different textured regions and not local changes
inside one texture. This is complicated since there are usually large responses of edge
detectors inside the texture. To detect boundaries in images correctly, the colour changes
and texturedness of the regions have to be taken into account.

In this work we use as a cue the brightness, colour, and texture gradients introduced
in [7, 9]. We shortly outline the basic paradigm.

2.1 Brightness and Colour Gradient

First, the RGB space is converted into the CIELAB L∗a∗b∗ space. Each of the three
channels is treated separately and finally merged together with the texture gradient (will
be explained).

Second, at each pixel location (x, y) in the image, a circle of radius r is created, and
divided along the diameter at orientation θ. The gradient function G(x, y, θ, r) com-
pares the contents (histograms) of the two resulting disc halves. A large difference
between the disc halves indicates a discontinuity in the image along the disc diame-
ter. In our experiments we used 8 orientations, every 45◦, the radius for the L channel
rL = d/100, for the a channel ra = d/200 and for the b channel rb = d/200. d is
the length of the diagonal of the image in pixels. We adopt the values used in [9]. The
half-disc regions are described by histograms gi, hi which are compared using the χ2

histogram difference operator

χ2(g, h) =
1
2

Nb∑

i

(gi − hi)2

gi + hi
, (1)
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Fig. 2. Top: Filter bank for one scale. Bottom: Universal textons sorted by their norms

where Nb is the number of bins in the histograms, here for brightness and colour gra-
dient Nb = 32. For one pixel there are as many numbers as orientations of θ (in our
case 8). The gradient at each pixel is the maximal number chosen over all orientations.
To obtain more robust results suppression of the non-maxima and the use of parabolic
interpolation is advisable. The reader is referred to [9] for more details.

After this step a gradient for every channel, i.e. GL(x, y), Ga(x, y), Gb(x, y) is
obtained.

2.2 Texture Gradient

By the texture gradient we mean the gradient computed on the image in the texton
domain to capture the variation in intensities in some local neighborhood. The gradient
is not related to surface orientation as sometimes used in literature.

To evaluate the texture gradient, we make use of the oriented filter bank, depicted
at the top of Fig. 2. The filters are based on rotated copies of a Gaussian derivative and
its Hilbert transform. More precisely, even- and odd-symmetric filters, respectively, are
written as follows

f1(x, y) = N
′′
0,σ1

(y)N0,σ2(x),
f2(x, y) = Hilbert(f1(x, y)), (2)

where N0,σ1 is Gaussian with zero mean and variance σ1. N ′′
0,σ1

stands for the second
derivative. The ratio σ2 : σ1 is a measure of the elongation of the filter. We used the
ratio σ2

σ1
= 2. The image is convolved with such a bank of linear filters. After that each

pixel contains a feature vector with responses to all filters in the filter bank. In our case,
we used 24 filters (odd and even symmetric filters with 6 orientations and 2 scales, see
the top of Fig. 2). Center-surround filters as in [7] could be added to the filterbank.

The pixels are then clustered, e.g. by K-means, in filter response feature space. The
dominant K clusters are called textons. Alternatively, as we did, the universal textons
(obtained from many representative images in Berkeley’s database) can be used, see the
bottom image of Fig. 2. Then each pixel is assigned to the closest “universal” texton.
By this step the image range, usually 0−255, is transformed to the range 1−K, where
K is the number of textons (in our case 64).

The same strategy based on half-discs with 6 orientations and comparing the his-
tograms, as was explained for the brightness and colour gradients in the previous sub-
section, is applied to the texton image. The number of histogram bins in Eq. (1) is now
the number of textons.

After this step a texture gradient GT (x, y) is obtained.
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Fig. 3. Combined boundary probability using colour + texture gradient of the leopard image.
Black points stand for high, white for low boundary probability

2.3 Combined Boundary Probability

The final step for the boundary detection in textured images is to merge the above
gradients to obtain a single value for each pixel.

We begin with a vector composed of the brightness, colour, and texture gradients,

x(x, y) = [1, GL(x, y), Ga(x, y), Gb(x, y), GT (x, y)]�. (3)

To define the final probability for a pixel at position (x, y) to be a boundary, a sigmoid
is used [7]

pb(x, y) =
1

1 + e−x�b
, (4)

where the constant vector b consists of weights for each partial gradient. If there is
no boundary change in a pixel at position (x, y), the vector x = (1, 0, 0, 0, 0)� and
x�b = b1. The “1” is at the beginning of the vector x hence allows one to control the
weight in the “no boundary” case through the b1 in the vector b.

The method for obtaining the weights in b, i.e. combining the information from
all gradients in an optimal way, is suggested in [9]. They used human labeled images
from the Berkeley database as ground truth [8]. In our implementation we used the b
provided with the source code on the web by the authors [9].

The “0” value for pb in Eq. (4) indicates no boundary, the “1” value indicates a
boundary, i.e. a change of colour or texture, in the image with maximal confidence. See
Fig. 3 for the combined boundary probability of the image in Fig. 1.

3 Segmentation

We used a segmentation technique based on the interactive graph cuts method first
introduced in [3]. There exists a very efficient algorithm for finding min-cut/max-flow
in a graph [4]. We introduced new penalties on edges in the graph based on a RGB
colour cue and on a combined boundary cue, respectively.

3.1 Building the Graph

The general framework for building the graph is depicted in Fig. 4. The graph is shown
for a 9 pixel image and an 8-point neighborhood N . For general images, the graph has



40 B. Mičušı́k and A. Hanbury

F

B

RB|q

RF|q

q

r

Wq,r

edge cost region

{q, r} Wq,r {q, r} ∈ N
λ RF|q q /∈ F ∪ B

{q, F} K q ∈ F
0 q ∈ B

λ RB|q q /∈ F ∪ B
{q, B} 0 q ∈ F

K q ∈ B

Fig. 4. Left: Graph representation for 9 pixel image. Right: Table defining the costs of graph
edges. K and λ are constants described in the text

as many nodes as pixels plus two extra nodes labeled F , B, and the neighborhood is
larger.

Each node in the graph is connected to the two extra nodes F , B. It allows the in-
corporation of the information provided by the user and sets a penalty for each pixel
being foreground or background. The user specifies two disjoint sets F and B contain-
ing samples of foreground and background pixels. If, for instance, the image point q
is marked as belonging to the foreground then there is a maximum weight K on the
edge {q, F} and zero weight on the edge {q, B}. K is some large number larger than
Kmin = 1 + maxq

∑
r:{q,r}∈NWq,r.

The regional penalty of a point q not marked by the user as being foreground F or
background B is defined as follows

RF|q = − ln p(B|cq)
RB|q = − ln p(F|cq), (5)

where cq = (cr, cg, cb)� stands for a vector in R
3 of RGB values at the pixel q. To

compute the posterior probabilities in Eq. (5) we used the Bayesian rule as follows

p(B|cq) =
p(cq|B) p(B)

p(cq)
=

p(cq|B) p(B)
p(B) p(cq|B) + p(F) p(cq|F)

. (6)

We demonstrate it on p(B|cq), for p(F|cq) it is analogical.
We do not know a priori the probabilities p(F) and p(B) of the foreground and

background regions, i.e. how large the foreground region is compared to the background
one. Thus, we fixed them to p(F) = p(B) = 0.5 and Eq. (6) then reduces to

p(B|cq) =
p(cq|B)

p(cq|B) + p(cq|F)
, (7)

where the prior probabilities are

p(cq|F) = fr
cr

· fg
cg

· f b
cb

, and p(cq|B) = br
cr

· bg
cg

· bb
cb

,
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Church image. (a) Input image with specified foreground/background seeds. (b,c) Seg-
mentation using colour cue. (d) Combined boundary probability. (e,f) Segmentation using colour
and texture gradient

where f
{r,g,b}
i , resp. b{r,g,b}

i , represents the foreground, resp. the background histogram
of each colour channel separately at the ith bin learned from seed pixels. Here the
histograms are represented in RGB colour space, nevertheless another colour space, e.g.
L*a*b*, can be used. We used 64 bins for each colour channel. For better performance
we smoothed the histograms using a one-dimensional Gaussian kernel.

In an implementation one should take into account the possibility of a zero value of
p(B|cq) in Eq. (5) and thus avoid an overflow. In such a case RF|q = K.

The edge weights of neighborhood N are encoded in the matrix Wq,r, which is not
necessarily symmetric. Setting the values of these weights is discussed in the follow-
ing subsections. The size and density of the neighborhood are controlled through two
parameters. We used a neighborhood window of size 21 × 21 with sample rate 0.3, i.e.
only a randomly selected 30% of all pixels in the window are used. Using only a frac-
tion of pixels in the window reduces the computational demand and thus allows the use
of larger windows while preserving the spatial relations.

3.2 Segmentation Using RGB Colour Cue

The simplest straightforward modification of the weight function in [3] is the augmen-
tation of the penalty function to take colour into account. The weight matrix is chosen
as follows

Wq,r = e−
‖cq−cr‖2

σ1 · 1
‖q − r‖ , (8)

where cq is the RGB vector of a point at the position q (as in Eq. (5)). σ1 is a parameter
(we used σ1 = 0.02 in all our experiments).

The penalty in Eq. (8) is good only for textureless images, as in Fig. 5. The next
section suggests a more general approach using colour and texture.
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3.3 Segmentation Using Combined Boundary Cue

A more general approach to define graph weights is to incorporate the combined bound-
ary probability from Sec. 2.3. The neighborhood penalty of two pixels is defined as

Wq,r =
(

e−
g(q,r)2

σ2

)2

, (9)

where σ2 is a parameter (we used σ2 = 0.08 in all our experiments) and

g(q, r) = pb(q) + max
s∈Lq,r

pb(s) , (10)

where pb(q) is the combined boundary probability described in Sec. 2.3 and Lq,r =
{x ∈ R

2 : x = q + k(r − q), k ∈ (0, 1〉} is a set of points on a line from the point
q (exclusive) to the point r (inclusive). We used the DDA line algorithm to discretize
the line. The penalty in Eq. (10) follows the idea that there is a large weight if the line
connecting two points crosses an edge in the combined boundary probability image.
The value of the weight corresponds to the strength of the edge. If there is no edge
between the points the weight approaches zero.

4 Experiments

The segmentation method was implemented in MATLAB. Some of the most time con-
suming operations (creating the graph edge weights) were implemented in C and in-
terfaced with MATLAB through mex-files. We used with advantage the sparse matrices
directly offered by MATLAB. We used the online available C++ implementations of the
min-cut algorithm [4] and some MATLAB code for colour and texture gradient compu-
tation [7]. The parameters like number of histogram bins (64), neighborhood window
size (21x21), sample rate (0.3), and sensitivities (σ1 = 0.02, σ2 = 0.08) were obtained
experimentally for giving the best performance on a large database of images.

The most time consuming part of the segmentation process is creating the weight
matrix W . However, the matrix W is created only once and adding some new seeds
(user interaction) changes only the penalties RF|q, RB|q which requires a minimum
amount of time. Hence the segmentation method can be designed as an interactive
method, i.e. the user can interactively add new seed points and thus control the final
segmentation. Once the graph is built, finding the min-cut takes 2 – 5 seconds on a
250 × 375 image running on a Pentium 4@2.8 GHz.

The first experiment shows the performance of both suggested weights, Eq. (8) and
Eq. (9). The church image in Fig. 5 is a colour image with no significant texture. In
this case, using the same seed points, the method based on the RGB colour space gives
a comparable result to the method based on the colour + texture gradient. Notice the
missing cross in the second method. The user can of course add extra seed points on the
cross and the problem would be solved. However, we wanted to show that the penalty
based on colour can sometimes give better results than using color + texture gradient
and is therefore useful in certain applications, especially if execution time is the main
criterion. Segmentation by the first method took 13 seconds, by the second method 97
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Fig. 6. Results. 1st column: original image with foreground (bright/yellow) and background
(dark/blue) seeds. 2nd column: combined boundary probability. 3rd column: binary segmentation.
4th column: segmentation with masked original image

seconds. However, the implementation of the texture gradient in C would dramatically
speed up the computation time of the second approach.

For textured images, as in Fig. 1, the method taking into account texture informa-
tion gives the best result. Other results are shown in Fig. 6 on various images from the
Berkeley database [5]. On the last “boat” image, it is shown that it depends on the user
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to specify what the object of interest in the image will be. It enables one to segment the
image into many regions. In our case we first segmented the boat, then the houses at
the back.

5 Conclusion

We improved the method [3] based on graph cuts by incorporating the brightness,
colour, and texture gradient based on [7] into the graph edge weights. We introduced
a new penalty function derived through the Bayesian rule to measure the pixel likeli-
hood of being foreground or background. The proposed method is semi-automatic and
provides segmentation into foreground and background objects (which may consist of
several isolated parts). The method is interactive since adding or removing seeds takes
little computational effort and hence the evolution of the segmentation can easily be
controlled by the user.
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