
MC Slicing for Volume Rendering Applications

A. Benassarou1, E. Bittar1, N. W. John2, and L. Lucas1,?

1 CReSTIC / LERI / MADS
Université de Reims Champagne-Ardenne, Reims, France

2 School of Informatics,
University of Wales, Bangor, United Kingdom

Abstract. Recent developments in volume visualization using standard
graphics hardware provide an effective and interactive way to under-
stand and interpret the data. Mainly based on 3d texture mapping, these
hardware-accelerated visualization systems often use a cell-projection
method based on a tetrahedral decomposition of volumes usually sam-
pled as a regular lattice. On the contrary, the method we address in this
paper considers the slicing problem as a restricted solution of the march-
ing cubes algorithm [1, 2]. Our solution is thus simple, elegant and fast.
The nature of the intersection polygons provides us with the opportunity
to retain only 4 of the 15 canonical configurations defined by Lorensen
and Cline and to propose a special look-up table.

1 Introduction

Interactivity is often regarded as a necessary condition to efficiently analyze
volumetric data, and so obtaining fast enough rendering speeds has historically
been a major problem in volume visualization systems. Over the last decade,
a large number of methods have been developed to significantly improve tradi-
tional approaches, which are known to be very expensive with respect to CPU
usage [3]. The generalized use of modern PC graphics boards is part of these
recent advances to offer today’s users a good level of interactivity [4, 5, 6].

The volume rendering algorithm that we have developed employs a novel
technique that is centered on an efficient incremental slicing method derived
from the marching cubes algorithm [1, 2]. This approach allows us to achieve
interactive rendering on structured grids on standard rendering hardware. In
this paper we present a brief overview of related work (Sec. 2), and review
the basic concepts of direct volume rendering via 3d texture mapping (Sec. 3).
We then describe in detail our incremental slicing algorithm together with an
analysis of the results that we have obtained from our visualization system.

? Correspondence to: laurent.lucas@univ-reims.fr, Rue des Crayères, BP 1035,
51687 Reims Cedex 2.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 314–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

MC Slicing for Volume Rendering Applications 315

2 Background and Related Work

The two main categories of volume visualization techniques in popular use are
surface extraction algorithms and direct volume rendering algorithms. The key
idea of surface-based rendering is to extract an intermediate surface description
of the relevant objects from the volume data [2]. In volume rendering, images
are created directly from the volume data, and no intermediate geometry is
extracted [7]. Our work is concerned with this second category, and in particular,
with interactive volume rendering methods. Note, however, that we will make
use of a technique first developed for the marching cubes surface-based rendering
algorithm.

A variety of software and hardware approaches are possible to implement
direct volume rendering. They will typically employ one of two basic scanning
strategies for traversing the volume:

Feed Backward Projection or Image Order Traversal. The pixels in the image
plane are traversed and imaginary rays are cast through each pixel in the volume.
The path of the ray determines the pixel value. Lavoy’s raycasting algorithm is
an example of image order traversal.
Feed Forward Projection or Object Order Traversal. The data volume is traversed
and each voxel in the volume is projected onto the image plane. Splatting [8] is
a good example of an Object Order Traversal technique.

These strategies correspond to the image and object order rasterization algo-
rithms. High quality volume rendering, at the cost of compute time, is provided
by raycasting and splatting; lower quality, but faster rendering, is provided by
shear-warp rendering [9] and texture-based methods. These faster methods will
typically make use of graphics hardware to provide interactive rendering rates,
and the latest generations of commodity graphics cards, such as NVidia GeForce
and ATI Radeon families, are proving to be ideal for this purpose. In the follow-
ing sections, we have classified algorithms that make use of commodity graphics
cards into: projection-based methods and slicing-based methods. We then pro-
vide an overview of texture mapping methods for volume rendering.

Projection-based methods. Shirley and Tuchman [10] were amongst the first to
use polygon rendering hardware support for approximate volume rendering.
Based on a decomposition into tetrahedra of any part of three-dimensional data,
the projected tetrahedra (PT) algorithm proceeds first by classifying each tetra-
hedron according to its projected profile in order to find the positions of the
tetrahedra vertices after the perspective transformation and to decompose them
into triangles. This idea of the PT algorithm has subsequently been re-used
by many similar works since then. For example, Stein et al. [11] attempted to
improve these approximations by employing a more accurate sorting algorithm.

Slicing-based methods. Slicing-based methods can be considered as an approxi-
mation of the previous methods, whereby the projections of the faces of a poly-
hedral element are approximated by a set of polygons. Yagel et al. [12] proposed

316 A. Benassarou et al.

a technique that allows the faces to be approximated by a polygon that rep-
resents its intersection with a sweep plane. They show that this technique can
render visually comparable images faster without having to explicitly store any
kind of vertex or face adjacency information which is necessary for most other
methods. Other proxy geometry, such as spherical shells, may be used to elimi-
nate artifacts caused by perspective projection [13]. More recently, Chopra and
Meyer [14] have improved Yagel’s incremental slicing method whereas Lensch et
al. [15] have proposed a new paradigm based upon a slicing prism.

3 Slicing-Based Methods for Hardware Texture Mapping

The OpenGL application programming interface provides access to the advanced
per-pixel operations that can be applied at the rasterization stage of the graphics
pipeline, and in the frame buffer hardware of modern graphics workstations. In
particular, they provide sufficient power to render high resolution volume data
sets with interactive frame rate using 2d or 3d texture mapping.

Object-aligned slicing. Support for 2d texture mapping is now a standard feature
of modern graphics PCs, and is suitable for implementing object-aligned slicing.
The principle is similar to the shear-warp algorithm [9]. It involves storing a set of
three rectilinear volume data sets, and using them as three perpendicular stacks
of object aligned texture slices (Fig. 1). Slices are taken through the volume
orthogonal to each of the principal axes and the resulting information for each
slice is represented as a 2d texture that is then pasted onto a square polygon of
the same size. The rendering is performed by projecting the textured quads and
blending them back-to-front into the frame buffer. During the process of texture
mapping the volume data is bilinearly interpolated onto a slice polygon.

Fig. 1. Object-aligned slice stacks with 2d texture mapping

View-aligned slicing. The use of 3d texture mapping hardware has become a
powerful visualization option for interactive high-quality direct volume render-
ing [16, 6]. The rectilinear volume data is first converted to a 3d texture. Then,
a number of planes perpendicular to the viewer’s line of sight are clipped against
the volume bounding box. The texture coordinates in parametric object space

MC Slicing for Volume Rendering Applications 317

are assigned to each vertex of the clipped polygons. During rasterization, frag-
ments in the slice are trilinearly interpolated from 3d texture and projected onto
the image plane using adequate blending operations (Fig. 2).

Fig. 2. View-aligned slice stacks with 3d texture mapping

Proxy geometry characterization. The proxy geometry characterization step in
the graphical pipeline can be specified by either enclosing rectangles of intersec-
tions, or polygons of intersections. The use of enclosing rectangles is a straightfor-
ward method of texture mapping cut-planes. Other approaches are more complex
and require finding the polygon of intersection between a given cut-plane and
the cube of data. Directly performed on the CPU or the GPU, this approach
is faster for processing fragments, because one visits only those fragments that
are inside the cube of data. The approach used by Kniss et al. [17] considers the
following stages:

1. Transform the volume bounding box vertices into view coordinates.
2. Find the minimum and maximum z coordinates of the transformed vertices.
3. For each plane, in back-to-front order:

(a) Test for intersections with the edges of the bounding box and add each
intersection point (up to six) to a fixed-size temporary vertex list.

(b) Compute the centre of the proxy polygon by averaging the intersection
points and sort the polygon vertices clockwise [18].

(c) Tessellate the proxy polygon into triangles and add the resulting vertices
to the output vertex array.

Unfortunately, this algorithm suffers from its re-ordering stage. Conversely, the
method we propose provides an implicitly ordered sequence of vertices that can
be directly drawn by OpenGL function calls. This novel, easy to use algorithm
is described below.

4 MC Slicing Algorithm

Marching cubes principle. Concisely, the original marching cubes algorithm al-
lows one to efficiently polygonize an approximation of the intersection between
a surface and a cube. The approximation is achieved through evaluating some
predicate at the eight corners of the cube. The 256 possible solutions are known
and stored in a precalculated table. Each entry of this table is a triplet sequence
which indicates the edges hit by the surface and allows us to interpolate the
intersection triangles.

318 A. Benassarou et al.

Adjustments for slicing purposes. In our case, we have a singular surface and a
single cube. The surface is a view-aligned plane, and the cube is the 3d texture.
The predicate we test on each corner of this unit cube is defined as follows:
“Is this corner deeper than the current plane?” (Algo. 1, line 1). When the
intersection between the cube and the plane is not empty (0 vertex), it is either
a triangle (3 vertices), a quad (4), a pentagon (5) or a hexagon (6). As there
is never more than one connected component, the 256 surfaces might be stored
directly as polygons (Table 1) instead of triangle sets. In fact, these polygons
are all convex and they can even be transmitted to OpenGL as triangle fans.

Algorithm 1. McSliceCube ()

begin
for i ∈ [0 . . . 8[do

Zi = (i&1 6= 0 ? GL MODELVIEW0,2 : 0)
+ (i&2 6= 0 ? GL MODELVIEW1,2 : 0)
+ (i&4 6= 0 ? GL MODELVIEW2,2 : 0) + GL MODELVIEW3,2;

zmin = mini∈[0...8](Zi);
zmax = maxi∈[0...8](Zi);
for z ∈ [zmin . . . zmax] do

1 key =
∑

i∈[0...8[(Zi > z ? 2i : 0);
if Tkey,0 6= −1 then

glBegin (GL TRIANGLE FAN);
2 McSliceEdge (Z, z, Tkey,0);
3 McSliceEdge (Z, z, Tkey,1);
4 McSliceEdge (Z, z, Tkey,2);
5 for (i = 3;Tkey,i 6= −1; i = i + 1) do McSliceEdge (Z, z, Tkey,i);

glEnd ();

end

Algorithm 2 McSliceEdge (Z, z, e)

// Vertices + coordinates of an edge
edge v0, edge v1 : EdgeId 7→ V ertexId
edge x, edge y, edge z : EdgeId 7→ ∅ ∪ {0, 1}

begin
z0 = Z[v0] where v0 = edge v0 (e);
z1 = Z[v1] where v1 = edge v1 (e);
r = (z − z0)/(z1 − z0);
switch e do

case 0, 1, 2, 3 : glVertex3d (r, edge y (e), edge z (e));
case 4, 5, 6, 7 : glVertex3d (edge x (e), r, edge z (e));
case 8, 9, 10, 11 : glVertex3d (edge x (e), edge y (e), r);

end

.

MC Slicing for Volume Rendering Applications 319

Eye

X

v2

v6
v7

v5
v4

v1

Z

Y

Screen
v3

Depth

Slice

zmin zmax

e9

e8

e3

e1

Fig. 3. Example of MC slicing. Vertices 0,

1, 2, 3, 5 and 7 are deeper than the slicing

plane

Table 1. Excerpt from our table. Each

entry is an ordered sequence of edges

hit by the surface

T intersected edge sequence
0 -1, -1, -1, -1, -1, -1, -1, -1
1 4, 8, 0, -1, -1, -1, -1, -1
...

...
174 1, 3, 9, 4, 0, -1, -1, -1
175 3, 9, 8, 1, -1, -1, -1, -1
176 3, 11, 10, 8, 5, -1, -1, -1

...
...

254 4, 0, 8, -1, -1, -1, -1, -1
255 -1, -1, -1, -1, -1, -1, -1, -1

Example. If we consider the case seen in Fig. 3, we observe that six vertices
are deeper than the current cut plane. Those vertices are named 0, 1, 2, 3,
5 and 7. Line 1 of Algo. 1 gives 1 + 2 + 4 + 8 + 32 + 128 = 175 as index
of the first dimension of Table 1. At this index, we find that the ordered se-
quence T175 = {3, 9, 8, 1,−1,−1,−1,−1}, which means that the intersection is
not empty (T175,0 6= −1) and the first edge to be processed is edge number 3
(T175,0). Line 2 calls Algo. 2 which performs the intersection for this edge (inter-
polation between the two ends of the edge, v6 and v7). Similarly, lines 3 and 4
compute the intersection points with edges 9 (T175,1) and 8 (T175,2). Because
there is a fourth edge (T175,3 6= −1), we then enter the loop and finally operate
line 5 (edge 1). The algorithm ends the triangle fan here since T175,4 = −1.

Fig. 4. Comparisons between our methods and the usual Convex hull approach

320 A. Benassarou et al.

5 Results and Discussion

For comparison purposes, we have implemented the usual Convex hull solution
(Sec. 3). We have also developed a marching tetrahedra-like algorithm. Whereas
MC slicing operates directly on a cube, MT slicing decomposes the same cube
into six tetrahedra and computes the intersection between the slicing plane and
each tetrahedron. There are fewer cases (16 instead of 256) and intersections are
either triangles or quads when they exist. The main advantage offered by the
original marching tetrahedra is that the resulting geometry does not suffer from
the possible ambiguities of the marching cubes. Nevertheless, the simplicial de-
composition involves more OpenGL primitives as we compute six intersections
instead of one. Because there cannot be any ambiguity when intersecting a plane
and a cube, we consider that the extra computational cost is not really worth it.
Figure 4 presents the comparison between the three discussed methods. The
performance measurements were obtained on a Linux platform equipped with
an AMD Athlon XP 2200+ CPU and a GeForce 6800 TD graphic board using
a viewport size of 704× 576 pixels. The volume data (512× 512× 106 CT scan)
is illustrated on Fig. 2. Each technique has been run five times at five different
sampling rates : 1×, 2×, 4×, 8× and 16× (distance between slices = 1/16). Algo-
rithm 2 has also been coded with shading languages such as Cg or GLSL but we
did not notice any real gain. The benchmarks present the number of frames per
second reached without and with actual texturing process. We observe that, at
low sampling rates, our method shortly accelerates the rendering. The real im-
pact of our method can be observed with higher sampling rates: from 4× to 16×,
the MC algorithm performs the same slicing as the other two approximately four
and five times quicker. This major improvement in the performance is mainly
due to the simplicity of the algorithm. Like the original marching cubes, our
method owes its efficiency to the precalculation of a 2 Kbytes look-up table.
In summary, the two major advantages of the MC slicing approach are: it pro-
cesses the whole cube without any tetrahedral decomposition; and it generates
the surface vertices directly in the correct order. These advantages allow us to
save on the CPU time and to achieve higher frame rates.

6 Conclusion

In this paper, we presented an accelerated slicing algorithm for interactive vol-
ume rendering of structured grids. Derived from the classic marching cubes, it
requires a small amount of memory and provides adaptive rendering for im-
proved image accuracy as well as progressive rendering for rapid feedback at
interaction time. It is finally suited to exploit graphics hardware. There is a
growing requirement for interactive volume visualization from medical applica-
tions. Collaborative work is beginning on developing a virtual reality simulator
for interventional radiology procedures [19], where fast and efficient rendering
of patient specific data is a major requirement. We intend using the MC slicing
algorithm to provide this requirement. This will enable us to further develop and
refine the ideas presented in this paper.

MC Slicing for Volume Rendering Applications 321

References

1. Wyvill, B., Wyvill, G., McPheeters, C.: Data structure for soft objects. The Visual
Computer 2 (1986) 227–234

2. Lorensen, W., Cline, H.: Marching cubes : a high resolution 3D surface construction
algorithm. Computer Graphics 21 (1987) 163–169

3. Brodlie, K., Wood, J.: Recent advances in visualization of volumetric data. In:
Proc. Eurographics 2000 - STAR Reports. (2000) 65–84

4. Engel, K., Ertl, T.: High-quality volume rendering with flexible consumer graphics
hardware. In: Proc. Eurographics ’02 - STAR Reports. (2002)

5. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware
accelerated volume rendering. In: Proc. Eurographics/IEEE TCVG Symposium
on Visualization. (2003) 231–238

6. Westermann, R., Ertl, T.: Efficiently using graphics hardware in volume rendering
applications. Computer Graphics 32 (1998) 169–179

7. Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and
Applications 8 (1988) 29–37

8. Westover, L.: Footprint evaluation for volume rendering. Computer Graphics 24
(1991)

9. Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization
of the viewing transformation. Computer Graphics 28 (1994) 451–458

10. Shirley, P., Tuchman, A.: A polygonal approximation to direct scalar volume
rendering. Computer Graphics 24 (1990) 63–70

11. Stein, C., Becker, B., Max, N.: Sorting and hardware assisted rendering for volume
visualization. In: Proc. ACM Symposium on Volume Visualization. (1994) 83–90

12. Yagel, R., Reed, D., Law, A., Shih, P., Shareef, N.: Hardware assisted volume
rendering of unstructured grids by incremental slicing. In: Proc. ACM Symposium
on Volume Visualization ’96. (1996) 55–63

13. LaMar, E., Hamann, B., Joy, K.: Multiresolution techniques for interactive texture-
based volume visualization. In: Proc. ACM Symposium on Volume Visualization
’99. (1999) 355–361

14. Chopra, P., Meyer, J.: Incremental slicing revisited: Accelerated volume rendering
of unstructured meshes. In: Proc. IASTED Visualization, Imaging and Image
Processing ’02. (2002) 533–538

15. Lensch, H., Daubert, K., Seidel, H.: Interactive semi-transparent volumetric tex-
tures. In: Proc. Vision, Modeling and Visualization ’02. (2002) 505–512

16. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. In: Proc. ACM Symposium on
Volume Visualization ’94. (1994) 91–98

17. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-
dimensional transfer functions and direct manipulation widgets. In: Proc. Visual-
ization ’01. (2001) 255–262

18. Moret, B., Shapiro, H.: Algorithms from P to NP. Volume I: Design and Efficiency.
Benjamin-Cummings (1991)

19. Healey, A., Evans, J., Murphy, M., Gould, D., Phillips, R., Ward, J., John, N.,
Brodlie, K., Bulpit, A., Chalmers, N., Groves, D., Hatfield, F., How, T., Diaz,
B., Farrell, M., Kessel, D., Bello, F.: Challenges realising effective radiological
interventional virtual environments: the CRaIVE approach. In: Proc. Medicine
meets Virtual Reality, IOS Press (2004) 127–129

	Introduction
	Background and Related Work
	Slicing-Based Methods for Hardware Texture Mapping
	MC Slicing Algorithm
	Results and Discussion
	Conclusion
	References

