J Internet Serv Appl (2012) 3:59-66
DOI 10.1007/s13174-011-0043-x

SI: FOME - THE FUTURE OF MIDDLEWARE

Challenges in very large distributed systems

Maarten van Steen - Guillaume Pierre -
Spyros Voulgaris

Received: 26 October 2011 / Accepted: 9 November 2011 / Published online: 19 November 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Many modern distributed systems are required to
scale in terms of their support for processes, resources, and
users. Moreover, a system is often also required to operate
across the Internet and across different administrative do-
mains. These scalability requirements lead to a number of
well-known challenges in which distribution transparency
needs to be traded off against loss of performance. We con-
centrate on two major challenges for which we claim there
is no easy solution. These challenges originate from the fact
that users and system are becoming increasingly integrated
and are effectively leading us to large-scale socio-technical
distributed systems. We identify the design of such inte-
grated systems as one challenge, in particular when it comes
to placing humans in the loop as a necessity to proper op-
eration of the system as a whole. As users are so tightly
integrated into the overall design, and systems naturally ex-
pand through composition, we will be facing problems with
respect to long-term management, which we identify as an-
other major challenge.

Keywords Distributed systems - Socio-technical systems -
Cloud computing

M. van Steen (X) - G. Pierre - S. Voulgaris
VU University Amsterdam, Amsterdam, The Netherlands
e-mail: steen@cs.vu.nl

G. Pierre
e-mail: gpierre @cs.vu.nl

S. Voulgaris
e-mail: spyros@cs.vu.nl

1 Introduction

There is no longer such a thing as a stand-alone computer
system: computer systems are networked. Moreover, al-
though we are now accustomed to the fact that everything
is connected, we still prefer to see the distributed nature of
modern computer systems more or less hidden. Distribution
transparency has always been, and continues to be an impor-
tant design goal.

However, distribution transparency is since long increas-
ingly challenged as connectivity becomes more pervasive,
for connectivity essentially continues to scale any dis-
tributed system by demanding that it interfaces to services
and other distributed systems that were not there at design
time. This continuous growth leads to a number of scalabil-
ity challenges, many of which are not new, but are simply
always there no matter what.

In this paper, we concentrate on new challenges that arise
from the fact that many modern distributed systems will be
part of our pervasive computing environment. In our view,
we are beyond the point that we can speak of “end users”:
users are part of a system and as such they need to be in-
corporated in the design. Numerous examples come to mind
concerning the contribution of users to the overall perfor-
mance of a system. Perhaps the most prevalent is the use of
modern social media, and the gradual move of their Web-
based forms to mobile computing platforms.

We start with discussing some of the obvious challenges,
but swiftly move to providing an example to illustrate what
we may be facing in Sect. 3. In the succeeding two sections,
we then concentrate on getting users in the loop, but also
management issues. The latter may be argued belong to the
“old” challenges, but problems are being aggravated as sys-
tems are moving into (a multitude of) clouds.

@ Springer

mailto:steen@cs.vu.nl
mailto:gpierre@cs.vu.nl
mailto:spyros@cs.vu.nl

60

J Internet Serv Appl (2012) 3:59-66

2 Obvious challenges

Let us look at a few challenges for large-scale distributed
systems for which it can be argued that they have never been,
and perhaps will never be, solved to our full satisfaction. In
the following, we address just a few that we believe are very
important, but there are obviously many more, often specific
problems.

2.1 Distribution transparency

Distribution transparency reflects the extent to which a sys-
tem appears as a whole, rather than being a collection of
independent components. In other words: a high degree of
transparency will let the system appear to be coherent to its
users. The extreme case is when a single-system view can
be offered, virtually indiscernible from a nondistributed sys-
tem.

The problem with striving for distribution transparency
in very large systems is that performance will degrade to
unacceptable levels. The cause is obvious: being networked,
we need to face failures and their recoveries that can never
be fully masked. In addition, network latencies have a natu-
ral lower bound that becomes noticeable when dealing with
long-haul connections.

These performance problems can be partly tackled
through replication, by which components are copied and
placed close to where they are needed, but as soon as read-
to-update ratios decrease, replication may actually lead to
a scale-down of the system if consistency is needed (see
also [23]). Moreover, the CAP principle tells us that we
simply cannot combine consistency and availability in the
presence of network partitions [6].

There is no simple solution to achieving distribution
transparency, and we will have to continue to look for
application-specific solutions to achieve acceptable trans-
parency. The last word has not been said, and the main
challenge remains to discover what is actually acceptable to
users.

2.2 The Internet of things

Another challenge for large-scale distributed systems is
dealing with what is known as the internet of things: the per-
vasive presence of a multitude of IP-enabled things, ranging
from tags on products to mobile devices to services, and so
forth [2]. From a distributed-systems perspective, the chal-
lenge is to move away from the network- and things-oriented
views and provide a view in which the collaboration of all
these Internet-enabled things form, indeed, a coherent dis-
tributed system.

What we are essentially addressing here is the inherent
heterogeneity of any modern large-scale distributed system.

@ Springer

Applications
I:l I:I I;l I;l External
Wireless distributed network <> support
S L8 & 5 system
Sensors/actuators

Fig. 1 An abstract view of the Internet-of-things as a distributed sys-
tem

We are witnessing the integration of wireless sensor and ac-
tuator networks as a distributed computing platform with
more traditional cloud-based systems to which specific com-
putations and storage facilities are offloaded, as sketched in
Fig. 1.

To come to such a perspective, we need to face consider-
able challenges:

— How can subsystems such as sensor networks be de-
vised as a distributed system? Work is underway, as ex-
emplified by approaching such networks as distributed
databases [12], or providing the means to actually pro-
gram them as a system [15].

— Given the potential size of the data generated by sensors
and related devices, a trade-off will need to be found be-
tween in-network processing and aggregation techniques
versus streaming data to the external support system. This
trade-off is not an easy one. It depends on the capabili-
ties of the distributed sensor network, the communication
channel between sensor network and support system, and
the support system itself. Again, the mere scale of such
systems (think, for example, of hundreds of thousands of
mobile devices that act as sensors), may be daunting.

— An issue that we will be addressing more in the following
sections is processing of all input into useful feedback.
We anticipate that notably with respect to this aspect, so-
cial computing elements will play an important role.

2.3 Building collaborative systems

Many modern distributed systems will necessarily have to
be hosted by multiple administrative organizations. In fact,
if large-scale decentralization is what we are aiming for, it is
almost inevitable to devise collaborative systems. We claim
that deep insights in building these type of systems such
that basic security and dependability requirements are met
is lacking, to say the least. In fact, we should ask ourselves
whether it is even possible, as illustrated by the security
problems hampering structured peer-to-peer networks [22].

The problems related to collaboration in large-scale dis-
tributed systems are not new and are being addressed by
research into (algorithmic) mechanism design, a subfield
within game theory. Devising mechanisms that work, scale,
and can be efficiently implemented is a challenge. We fore-
see that much effort will be spent before seeing widely

J Internet Serv Appl (2012) 3:59-66

61

adopted solutions. That we are not dealing with an unsolv-
able problem is illustrated by the success of BitTorrent.

3 New challenges: socio-technical distributed systems

As mentioned, there are many well known, or perhaps even
obvious challenges to face for developing distributed sys-
tems. However, we only have to look around to see that there
may be much more that we need to deal with and for which
we may have to start adjusting our research agendas.

3.1 Introduction

Let us consider one important development that is taking
place at this moment: the emergence of socio-technical sys-
tems. These systems integrate people with computer sys-
tems (comprising both hardware and software), along with
a (likely mostly implicitly defined) set of rules of usage
and interaction. The keyword here is integration: in a socio-
technical system the boundary between people, technology,
and usage is becoming blurred.

In this context, many distributed systems are seen to be
designed to be directly used and shared by people, yet users
and system are more or less separated. For example, there
have been many systems for direct user-to-user communi-
cation, including those based on (mobile) telephony and
various user-oriented messaging systems [25]. Also, in the
last decade, we have seen an explosion of Web-based sys-
tems that offer services to end users through Web browsers,
such as online transaction systems, systems for electronic
commerce, and distributed systems implementing informa-
tional services (such as online timetables and route plan-
ners). More recently, we are witnessing an increasing real-
ization of ubiquitous computing [19] as envisaged by Mark
Weiser [26]. To illustrate, many public transportation sys-
tems are now equipped with RFID-based tickets and super-
markets allow customers to self-scan their groceries.

As said, the design of these distributed systems has
treated end users as being separated from the system, in
the sense that they are assumed to literally use a system.
As a result, much effort has always been put into improving
distribution transparency: masking, where appropriate, that
data, processes, and control are indeed distributed across a
system. We believe that we are facing a major challenge for
future large-scale systems as they become increasingly ubig-
uitous. We can no longer afford to separate the users from a
system in the design process. Instead, a seamless integration
of users and computer system is what we will have to deal
with.

3.2 An example scenario

To illustrate what we might be dealing with, consider the
following scenario. Bob likes to listen to music and is inter-
ested in discovering things he has never heard before. His
taste is rather diverse and covers various music genres, for
which reason he has subscribed to different periodicals in or-
der to pick up the latest and to be recommended about refer-
ence recordings. Using these and other information sources,
Bob buys CDs, buys songs from various Internet sources,
and makes use of online audio-streaming services such as
Spotify [9].

What we have just described is a fairly traditional way
of how users currently find information and how they buy
music, or other media for that matter. What is already quite
novel is the use of modern distributed systems for audio
streaming (Spotify uses peer-to-peer technology to increase
availability and to guarantee high streaming rates). How-
ever, there is considerable room for improvement which is
already and steadily underway. For example, magazines are
increasingly becoming online, CDs will most likely be re-
placed entirely by digital-only solutions, and even high-end
audio equipment is becoming increasingly network enabled.

If we take these developments one step further, a future
scenario in which users and distributed systems are in a
closed loop, could be the following.

Bob is offered a personalized electronic magazine that
is pushed to his tablet. The magazine makes no distinction
between music styles: there is no need to do so as it is per-
sonalized. The system knows which information to push as
it has learned what to recommend from observing past pur-
chases, but also from what Bob has actually been listening
to. In addition, it has discovered the best way to present new
material that will most likely be appreciated. Next to such
recommendations, there is ample opportunity to effectively
and efficiently discover new content by browsing as the sys-
tem has also found out what the optimal search space is for
Bob (of which size and content may be dependent on current
context).

The information pushed to a user comes from various
sources, notably other people publishing about music in the
same way that magazines today are full of CD reviews. The
system automatically discovers to which reviewers a user
reacts (e.g., by music that is being bought). Through con-
tent analysis it also effectively organizes itself as a publish-
subscribe system, which is continuously being fine tuned.

Yet there is more. In this particular example, to improve
the discovery process, the system automatically builds a so-
cial network around music taste, linking Bob to his potential
peers. At first instance, this is done to improve the efficiency
of searching for content, along the lines we have described
previously [24]. More advanced decentralized evolutionary
algorithms which optimize on which attributes to base link

@ Springer

62

J Internet Serv Appl (2012) 3:59-66

formation are, however, preferred [7]. At second instance,
this social network will bring Bob into contact with others
(if so desired) to discuss music. Most important, however, is
that in the end he will be looking at a personalized library of
his favorite music, which is continuously being filled with
new music to his liking, and at a rate that fits his way of
living.

An important observation is that the boundary between
user and computer system is vanishing. In this example, Bob
is continuously reacting to what the system is offering, and
the system, in turn is continuously reacting to Bob. More-
over, he is not alone: the system as a whole can operate only
by virtue of other users and their behavior, be they listeners,
reviewers, bloggers, and so on.

3.3 Its consequences

Obviously, there are many challenges to face by just consid-
ering this example scenario. As a starting point, one possible
high-level architecture is sketched in Fig. 2. Essentially, the
distributed system consists of a series of local media sys-
tems installed at a user’s premises. We envisage that the lo-
cal system acts as a thin client, but this is actually not im-
portant. The core of the entire system is formed by a myriad
of services that are now shown to be running in the cloud.
Much of the distributed systems research has concentrated
on developing these services, often for cluster-based com-
puter systems. The real challenge now lies in developing ad-
ditional components that monitor user interaction, can do a
proper analysis, and adjust itself to individual usage. More-
over, many of the services shown will need to be integrated
and distributed between the cloud and the local media sys-
tem to make sure that performance criteria are met.

In effect, we claim that socio-technical distributed sys-
tems actually form a feedback control loop, and that a major
challenge lies in effectively closing that loop. Let us con-
sider the various parts that comprise this architecture.

3.3.1 The local media system

The local media system consists of many different types of
hardware and software components, and the complete set of
components may vary and change over time. The challenge
here is to make the composition easy. Hardware components
include networked audio/video equipment and their control
devices, e-reader devices, notification devices, and secured
payment equipment. Many of these components may be in-
tegrated into, for example, modern tablets, but may also be
separated in the form of smartphones or dedicated devices.
Managing the hardware is a challenge, but with protocols
like UPnP we have already come a long way. Nevertheless,
there is still considerable room for improvement as anyone
who has ever installed a networked audio/video system will

@ Springer

acknowledge. Moreover, by just considering the fact that
people are mobile, we will be facing intricate networking
problems and content access issues. However, we believe
that many of these hardware-related issues are being tackled
and do not form the big challenges for the near future.

Also, managing the core software components is an art
that has been mastered quite successfully. Most components
can automatically check for updates and often only a con-
firmation from the user is sufficient to start the process. Al-
though there is obviously room for improvement, and cer-
tainly the science of systems management and administra-
tion is arguably underdeveloped (see, for example, [3]), we
do not see the traditional management as one of the biggest
challenges.

3.3.2 Monitoring user behavior

If we are to build the type of adaptive systems that we envis-
age are necessary in the future, a major challenge lies in ac-
curately and effectively measuring and monitoring user be-
havior. In our example, we need to collect statistics on:

— Which music has been purchased

— Which music is being listened to, when, how long, and in
which context

— Which information on music has been read, when, and
how long

What can easily complicate matters is the fact that in our
example several people may be colocated and listening to
the same music. Likewise, in the case of a video-streaming
system, we need to take collectively watching a movie into
account. Furthermore, anticipating that the system will also
make recommendations, we need to get feedback from the
user on the quality of those recommendations. That feed-
back may be implicit (by testing to see if recommendations
are followed up), or asked directly from the user.

The challenge in monitoring a user’s behavior is to do this
as nonintrusive as possible. Ideally, a user would not even
notice that the system is continuously measuring actions and
reactions. However, life is not as simple as one may think.
Moran and Nakata [14] make clear that what they term ubig-
uitous monitoring is in need of much research. For example,
the mere fact that users know that they are being monitored
changes their behavior. Capturing a user’s behavior and pre-
dicting the effects of monitoring that behavior is a challenge
by itself.

What does this mean for designing very large-scale dis-
tributed systems? One thing to realize is that we may be
dealing with millions of users spread across the Internet. If
we are to accurately capture and analyze user interactions,
we will have to think carefully of where we place compo-
nents to do this. Ubiquitous computing architectures seem
to benefit from a more centralized organization [5], and in

J Internet Serv Appl (2012) 3:59-66

63

Fig. 2 A high-level architecture
of a socio-technical distributed
system

combination with processing lots of input data, placing the
analysis system locally seems to be a good option. In any
case, simply assuming that an interaction analyzer is placed
entirely in the cloud is not the way to go. At the same time,
we foresee that it is necessary to collect data from other user
interactions in order to improve the ubiquitous computing
experience. Not only that, we need to take into account that
users are mobile (although perhaps less in the scenario that
we sketched).

Summarizing, we face the need to have many local, cen-
tralized computing elements that need to be interconnected,
and each being able to support user mobility. Whether these
computing elements are personalized and can be carried
with their owner, or are part of the environment yet capa-
ble of handling different users is an open question.

3.3.3 Analyzing user behavior

The truly difficult part as we see it, lies in the analysis of
user behavior and subsequently taking the right measures
to optimally adapt the system. For our example scenario,
this analysis may boil down to developing advanced rec-
ommender systems that take current context into account
(such as time of day and location). For distributed systems
research, the challenge is to develop recommender systems
enhanced with the information from other users. Finding out
which information is needed, and from whom is not obvious.
To illustrate, we have found, quite surprisingly, that for cer-
tain recommender systems it does not really matter whether
data is used from a group of similar peers, or data from a
randomly selected group [17]. Note that such findings may
have a huge impact on the design of a distributed system:
whereas the first approach may require intricate distributed
algorithms, the second approach may be easy to implement
using fairly straightforward techniques such as gossiping
and randomized peer selection [8].

Media service
Review service
Recommender

Interaction analyzer

Payment service

Internet

User premises

¥ Local media system . %

Local media system

Local media system N

Captured interactions

Of course, the real challenge in (distributed) user analysis
lies in exploring the trade-offs between privacy and recom-
mendation/adaptation. Without any information from a user,
building a system that optimally adapts toward that user is
virtually impossible. On the other hand, once information on
a user is known and deployed in a decentralized way to en-
hance the quality of recommendations and adaptations, we
may easily be giving out information that should have stayed
private. This is a well-known problem (see, e.g., [13, 21]),
yet we envisage that it will remain one of the major chal-
lenges for large socio-technical distributed systems.

In the following, let us zoom into two major challenges:
incorporating the users as part of system design, and overall
systems management.

4 Making users part of the system

A great portion of future challenges in distributed systems
stems from the fact that users are becoming part of the sys-
tem, with all the unpredictability and spontaneity that this
brings. In our previous example, the system needs to figure
out how it can perform best for a single user, for which pur-
pose it mainly needs only that user’s input. We foresee that
future systems will need to take input from many more users
to reach acceptable levels of performance. In fact, with Web
2.0, blogs, and social networks, the user has been promoted
from a passive consumer of information to an active player,
shaping services and determining content and interactions.
A keyword here is crowdsourcing, which refers to the
delegation of a task to a large, undefined set of people, in the
form of an open call. Wikipedia is probably the most widely
known example of crowdsourcing, with close to 4,000,000
articles (in the English site alone) written collaboratively
by over 600,000 people. Wikipedia essentially provides the
framework for registering the collective knowledge base of

@ Springer

64

J Internet Serv Appl (2012) 3:59-66

hundreds of thousands of people, and making it easily ac-
cessible to the whole humanity.

In our example system, a typical form of crowdsourcing
will be collecting the opinions and reviews of streaming con-
tent and distributing those reviews to listeners. An important
challenge will be to properly channel the reviews: Bob may
gradually discover that Alice provides reviews of his liking,
and that he would very much prefer receiving her reviews
only and not those of Chuck. Again, the system will have
to discover these preferences, and perhaps also recommend
other reviewers to Bob based on his feedback. In this way, a
fully automated, personalized reviewer space appears from
which Bob can collect informed recommendations.

There are other forms of crowdsourcing, where the con-
tribution of users is not as straightforward as in Wikipedia or
the sketched review subsystem. Take, for instance, Twitter.
Many services are built around it to give trends and news
organized by topic or location simply by aggregating the
tweets people post. It is not any single individual’s tweet that
makes the trends, but the massive retweeting by many users.
What we have is a hugely decentralized system where infor-
mation is processed to produce aggregate results on the fly.
What is interesting and challenging in this case, is the fact
that humans are taking some action (posting tweets) driven
by some motivation (will to express themselves), and the
data are combined appropriately to produce some additional
result (realtime trends and news).

A more radical form of crowdsourcing is currently be-
ing explored and deployed using smartphones. One exam-
ple is a smartphone application that traces the locations of
its users, and uses data aggregation and analysis to split
users in groups of related hangout patterns. Given that, it
can subsequently send feedback to users on which spots of
the city appear to be vibrant with respect to people of their
own group, for instance due to an event that might interest
them. The application harnesses people’s mobility patterns
and hangout habits to produce a service. In a similar vein,
Alex Pentland’s group from MIT have successfully been au-
tomatically capturing face-to-face social interactions to op-
timally organize groups of people [18] or to obtain insight
in what they term societal “health state” [11].

These paradigms of harnessing collective knowledge,
opinions, mobility patterns, social interactions etc., lead to
systems that capture collective intelligence. These systems
have become known as under the term human-based com-
putation, which consists in capturing human brain functions
that are still very difficult or infeasible for computers to per-
form, giving humans a relative motivation. Perhaps the sim-
plest example is reCAPTCHA, which presents users with a
challenge of reading a word to prevent automated programs
from accessing content intended only for humans, while as
a by-product enables the accurate digitization of old books
and newspaper archives. Many other examples have fol-
lowed, such as GWAP (Game With A Purpose), which is

@ Springer

a simple online game that is surprisingly effective in accu-
rately and concisely tagging huge collections of photos by
its players.

In these systems, humans are completely embedded in-
side the system. In fact, the traditional model of computers
performing the calculations and humans just seeing them
has been completely inverted. Computers play the role of
the coordinator, while the actual computation is performed
by humans. What is common to these systems is their smart
design which combines attractive incentives for people to
voluntarily participate, as well as mechanisms to filter out
low quality input and harvest the useful data.

It would be exaggerated to claim that all future dis-
tributed systems will be aiming at putting humans in the
loop to harness collective intelligence. However, it is be-
coming evident that computers are becoming increasingly
connected and pervasive, and they have invaded our lives in
almost all respects, including our social activities, lifestyle,
etc. This suggests that for a multitude of future distributed
systems, humans will be part of the system by default, and
applications that take human feedback into account will al-
ways have an extra advantage. Therefore, we believe that
designing massive scale distributed applications that encour-
age human participation, and at the same time interact to the
user in a form that enables the automated processing, anal-
ysis, and usage of human input, will be a new type of chal-
lenge for future systems. Clearly, this is radically different
than conventional challenges of computation, memory, stor-
age, and bandwidth, which we do not consider here.

5 Managing cloud-based distributed systems

An interesting observation about the large-scale distributed
systems described so far is that they are most likely not pro-
vided by a single administrative entity. The electronic maga-
zines, recommender systems, online stores, social networks,
and so on clearly belong to a multitude of independently
managed systems designed to interoperate with each other.
Besides the obvious challenge of designing standard inter-
faces to allow such compositions to happen, one may notice
that nobody is in charge of “the entire system.” As a matter
of fact, even the choice of composing one subsystem with
another is not explicitly made by an administrator, but it de-
rives from the collective behavior of users.

From the point of view of large-scale distributed appli-
cation providers, this means that any user may couple any
application with any other one at any time. As more links
are being built between different applications, it becomes in-
creasingly irrelevant to consider them in isolation from each
other. For example, Bob may use the music-related tweets he
receives to train his personal recommendation system. Any
change in the semantics of Twitter, or the properties of tweet

J Internet Serv Appl (2012) 3:59-66

65

messages have a direct impact on the behavior of the recom-
mender.

Such increasing levels of interdependencies between
seamingly independent subsystems introduce a new chal-
lenge for large-scale distributed systems: In such conditions,
how does one guarantee correctness, fault-tolerance, perfor-
mance, privacy, etc.? To paraphrase Leslie Lamport’s fa-
mous quote, we could say that a very large distributed sys-
tem is one in which the failure of an external service you
did not even know existed can render your own application
unusable.

5.1 Management for correctness and fault tolerance

Managing a large distributed system is a tremendously com-
plex task. This was true already when a system was assumed
to work in isolation from other systems, but it becomes even
harder as soon as the system is coupled with others. In par-
ticular, it is not sufficient that each individual subsystem
manages its own correctness to be able to necessarily derive
the same property for the entire system.

A good example is the Amazon EC2 outage from April
2011 [1]. This incident originated in a faulty router config-
uration which disturbed the normal system operation. How-
ever, this event triggered several interrelated systems to take
corrective measures. Although each such measure makes
perfect sense when studying each subsystem in isolation,
the combined effect of these actions turned out to be dis-
astrous and to increase the magnitude of the problem rather
than solve it. What we are witnessing here is the emergent
behavior of a distributed system in terms of complex net-
works [10, 16].

Addressing this important challenge requires to be able
to predict the effect of any management action such as up-
dating a configuration file, and starting or stopping a given
machine. Recent examples show that we are far from fully
understanding the implications of such actions, even within
a single administration domain. Extending this type of pre-
diction to be able to reason about the effect on other exter-
nal yet coupled systems is a difficult research challenge that
we will have to address. This type of prediction will likely
be made even more challenging by the fact that each sys-
tem administrator will keep parts of her system’s internal
details secret. Note that a perfect prediction may not be nec-
essary: it may be sufficient to build systems such that they
can observe if an action has positive or negative effects on
the global system, and continuously converge toward a de-
sired state.

Management for fault tolerance may also require efficient
mechanisms to detect the faulty components in a large-scale
distributed system. Such components may be more com-
plex to monitor than individual misbehaving machines: for
example we may need to efficiently detect entire applica-
tions which do not comply with some minimum standards

of quality. Facing this type of issues, a defensive action from
a large-scale composition of applications could be to col-
lectively identify the faulty parts of the system and make
sure they cannot harm the rest (for example, by excluding
them from the system as a whole). An alternative could be
to harness the collective intelligence of the users in order to
perform complex system management tasks. Such actions
would obviously have to be carried out implicitly by the
users.

5.2 Management for performance

Any local, small-scale application typically has dozens of
configuration parameters which can potentially influence its
performance. A large-scale distributed application probably
has thousands or more. Managing such an application for
performance consists in finding the set of parameter values
which maximize performance. In essence, we can see per-
formance as a function of the system’s definition, its config-
uration parameters, and the execution environment (current
workload, network condition, etc.). It should be clear that no
human administrator can be expected to continuously tune
hundreds of configuration parameters. An important chal-
lenge will therefore be to build self-configuring systems. Im-
portant steps in this direction have already been made [4] but
they are restricted to systems with no more than a few dozen
parameters. We are still very far from truly self-configuring
large-scale systems.

6 Next steps: speculative solutions?

Any modern computer system can by now be considered as
a distributed system. Where hiding the details of distribu-
tion was for long a challenging goal, we have now reached
a stage in which challenges are shifting. We have iden-
tified a few “obvious” ones: next to attaining distribution
transparency, building the inevitable (very large) Internet of
things, and realizing truly collaborative systems.

In line of these challenges for very large-scale systems,
we envisage that the loop between user and core system
will become increasingly tighter, leading to very large-scale
socio-technical systems. The challenges for these types of
systems are very demanding: we need to design the systems
making use of the information and even computing capabili-
ties of humans. Users are thus moving into the design space.

And while this move is taking place, distributed systems
themselves are moving toward the cloud, where they are
composed (possibly by users), and maintained in a fully
decentralized manner crossing many administrative bounds.
What this means for (design for) maintenance and manage-
ment is something we can only guess. The relative lack of
science in systems management will definitely need to be
addressed.

@ Springer

66

J Internet Serv Appl (2012) 3:59-66

So here we have it: users are moving into the design arena
and are becoming first-class citizens in our distributed sys-
tems, and in doing so, we are facing huge management prob-
lems that cannot be solved using administrators. In fact, we
may even need to harness the collective intelligence of those
same users in order to make next steps.

What to do? The answer is perhaps indeed building self-
managing systems. But if we take a look at how we are cur-
rently doing this, it would seem that we’re just running a
bit faster with more people along avenues that have grown
wider, but are otherwise quite familiar to us. Maybe it is time
we start running along different paths.

What about trying to manage less and, instead, let the sys-
tem tell us what really needs to be managed? Tuning a sys-
tem is important, but maybe (fine-)tuning should be moved
to a second plan first. In our own work, we have been testing
how to deploy fully decentralized evolutionary algorithms
to find the best way for semantically clustering users, if only
to reduce search spaces. We throw in the parameters and let
evolution do its work. Results are worse compared to when
we design solutions using our own expertise, but the results
are still quite satisfactory. It’s a start.

Along these lines, seeking solutions that will give us
just a bit more grip on emergent behavior, perhaps without
completely understanding how those solutions intrinsically
work, may be an important step that we, as middleware and
systems community, may need to take more often. Loosen-
ing our grip of control may be the most challenging step
to take. Along these lines, finding and adopting solutions
that generally work, but never fix the problem, may also be
something we need to consider more seriously. The work by
Qin et al. reported at SOSP back in 2005 [20] may show to
be an inspirational starting point.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Amazon Web Services (2011) Summary of the Amazon EC2
and Amazon RDS service disruption in the US east region.
http://aws.amazon.com/message/65648/

2. Atzori L, Iera A, Morabito G (2010) The internet of things: a sur-
vey. Comput Netw 54(15):2787-2805

3. BergstraJ, Burgess M (eds) (2007) Handbook of network and sys-
tem administration. Elsevier, Amsterdam

4. Chen H, Jiang G, Zhang H, Yoshihira K (2010) A cooperative
sampling approach to discovering optimal configurations in large
scale computing systems. In: Proc. 29th IEEE international sym-
posium on reliable distributed systems

@ Springer

12.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Dey A (2010) Context-aware computing. In: Krumm J (ed) Ubig-
uitous computing fundamentals. CRC Press, Boca Raton, pp 321—
352

Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT
News 33(2):51-59

Huijsman R-J (Aug. 2011) An investigation into evolving dis-
tributed systems. Master’s thesis. VU University Amsterdam
Jelasity M, Voulgaris S, Guerraoui R, Kermarrec A-M, van
Steen M (2007) Gossip-based peer sampling. ACM Trans Com-
put Syst 25(3)

Kreitz G, Niemeld F (2010) Spotify—Ilarge scale, low latency, P2P
music-on-demand streaming. In: Proc. 10th international confer-
ence on peer-to-peer computing, Aug. 2010. IEEE Comput Soc,
Los Alamitos, pp 266-275

Lewis TG (2009) Network science: theory and practice. Wiley,
New York

. Madan A, Cebrian M, Moturu S, Farrahi K, Pentland A (2011)

Sensing the ‘Health state’ of our society. Technical Report TR-
663, MIT, Cambridge, MA

Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005)
TinyDB: an acquisitional query processing system for sensor net-
works. ACM Trans Database Syst 30(1):122-173

. McSherry F, Mironov I (2009) Differentially private recommender

systems: building privacy into the Netflix prize contenders. In:
Proc. 15th international conference knowledge discovery and data
mining (KDD), June 2009. ACM, New York, pp 627-637

Moran S, Nakata K (2010) Ubiquitous monitoring and user be-
haviour: a preliminary model.] Ambient Intell Smart Environ
2(1):67-80

Mottola L, Picco GP (2011) Programming wireless sensor net-
works: fundamental concepts and state of the art. ACM Comput
Surv 43(3):19

Newman M (2010) Networks, an introduction. Oxford University
Press, Oxford

Ogston E, Bakker A, van Steen M (2006) On the value of ran-
dom opinions in decentralized recommendation. In: Proc. 6th in-
ternational conference on distributed applications and interopera-
ble systems. Lecture notes in computer science, vol 4025, pp 84—
98. Springer, Berlin

Olguin DO, Pentland AS (2010) Sensor-based organisational de-
sign and engineering. Int J Organ Des Eng 1(1/2):69-97

Poslad S (2009) Ubiquitous computing: smart devices, environ-
ments and interactions. Wiley, New York

Qin F, Tucek J, Sundaresan J, Zhou Y (2005) Rx: treating bugs
as allergies—a safe method to survive software failures. In: Proc.
20th symposium on operating system principles, Oct. 2005. ACM,
New York, pp 235-248

Ramakrishnan N, Keller BJ, Mirza BJ, Grama AY, Karypis G
(2001) Privacy risks in recommender systems. IEEE Internet
Comput 5:54-62

Urdaneta G, Pierre G, van Steen M (2011) A survey of DHT secu-
rity techniques. ACM Comput Surv 43(2)

van Steen M, Pierre G (2010) Replicating for performance: case
studies. In: Charron-Bost B, Pedone F, Schiper A (eds) Repli-
cation, theory and practice. Lecture notes in computer science,
vol 5959. Springer, Berlin, pp 73-89. Chapter 5

Voulgaris S, van Steen M, Iwanicki K (2007) Proactive gossip-
based management of semantic overlay networks. Concurr Com-
put 19(17):2299-2311

Wams J, van Steen M (2004) Unifying user-to-user messaging sys-
tems. IEEE Internet Comput 8(2):76-82

Weiser M (1991) The computer for the 21st century. Sci Am
September:67-83

http://aws.amazon.com/message/65648/

	Challenges in very large distributed systems
	Abstract
	Introduction
	Obvious challenges
	Distribution transparency
	The Internet of things
	Building collaborative systems

	New challenges: socio-technical distributed systems
	Introduction
	An example scenario
	Its consequences
	The local media system
	Monitoring user behavior
	Analyzing user behavior

	Making users part of the system
	Managing cloud-based distributed systems
	Management for correctness and fault tolerance
	Management for performance

	Next steps: speculative solutions?
	References

