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Abstract The design of today’s System-on-Chip (SoC) architectures faces many challenges

in respect to the involved complexity and heterogeneity. An early and systematic exploration

of alternatives is mandatory to find a solution that meets all design requirements. There-

fore, the experience of system architects has to be supplemented with efficient performance

evaluation methods and tools that help in the broad exploration of the solution space. This

article describes TAPES (Trace-based Architecture Performance Evaluation with SystemC),

an approach that supports system designers in the performance evaluation of SoC architec-

tures. The concept captures the functionality of the architecture in the form of traces for

each resource. The trace primitives making up a trace are translated at simulation run-time

into transactions and superposed on the system architecture. The method uses SystemC as

modeling language, requires low modeling effort and yet provides accurate results within

reasonable turnaround times. A concluding application example for the exploration of a

network processor architecture demonstrates the effectiveness of the TAPES approach.

Keywords SystemC . Performance evaluation . Architecture exploration . Trace-driven

simulation . Transaction level modeling

1. Introduction

In the design of System-on-Chip (SoC) solutions the definition and quantitative characteri-

zation of suitable architectures is a vital issue. Typical SoCs may consist of a broad range of
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IP modules like embedded processors, accelerator blocks, interface modules, a memory sub-

system and specifically designed HW modules. All architectural resources are connected via

a communication infrastructure that provides system-internal connectivity for the exchange

of data and synchronization. Choosing an appropriate system architecture and mapping the

application’s subtasks to the resources are important tasks in the process of system level

design [1].

As the design space opens up a vast variety of solution alternatives, a systematic exploration

of design alternatives is necessary. Good design decisions in early design phases make up

a strong basis for the final implementation steps, both for the hardware and software parts

of the system. The designers experience and intuition that guide through the exploration

process has to be supplemented with efficient methods and tools for evaluating potential

solutions. The insights gained from a thorough analysis can then iteratively be used for

directed modifications of architectures. This helps in meeting time-to-market requirements

as well as design goals concerning performance, area and power, and leads to the selection of

solutions that are traded off against alternatives more intensively, eventually enabling higher

design quality.

Starting with modeling and simulating of such a system on RT-level using a hardware

description language is not feasible because of the modeling effort, the simulation times and

the inability to capture the behavior of mixed HW/SW systems. Therefore, the abstraction

level has to be raised. Recently, new modeling languages have been developed in order

to support designers in the early design stages on system level. Among others like SpecC

or System Verilog, mainly SystemC [6, 18] has gained attraction for design exploration.

SystemC allows modeling of SoCs on a high abstraction level and gradual refinement for

design and verification purposes.

The definition of the system architecture, i.e. the allocation of architectural resources and

the mapping of tasks under given optimization criteria, is the major step in system level

design. As exploration is an iterative process a great number of different potential solutions

have to be evaluated regarding their compliance with the design requirements. This means

that the complexity to generate suitable models for performance analysis as well as the

effort for evaluation have to be strictly limited, in order to allow the comparison of as much

alternatives as required. On the other hand it is necessary to capture enough information with

high accuracy for making reasonable design decisions.

For performance analysis a model is required that captures both the function and the

characteristics of the architecture resources adequately. This means that a performance

model should record the application’s execution behavior on the system architecture and

provide means to measure the load values of the computation resources, the communica-

tion infrastructure and the memory subsystem under workload conditions resulting from

external stimuli. For this purpose it is not necessary to execute the complete functional

specification at simulation run-time, but to reproduce the situation as if the application is

actually executed on the system architecture. Thus, performance models are usually differ-

ent from models for functional verification and synthesis, which have to be complete and

unambiguous.

In this paper we present TAPES (Trace-based Architecture Performance Evaluation with

SystemC), a transaction level approach for the performance evaluation of SoC architec-

tures. Traces are used to model the behaviors of the application on a high abstraction level

and their interaction on the architecture, avoiding maintenance of a fully-fledged functional

model during architecture exploration. This concept provides high simulation efficiency com-

bined with easy reconfigurability of the underlying model to different resource and mapping

configurations.
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The paper is structured as follows: In Section 2 we give a short overview of related work

in this field. The subsequent two sections describe the concept and implementation of TAPES

respectively. Section 5 shows a network processor application that is explored with the help

of our approach. Section 6 concludes the article and gives some outlook for the further

improvement of TAPES.

2. Related work

Performance estimation on system level is a topic of intensive research. Many approaches

have been proposed that rely on different concepts. A Network Calculus based approach is

described in [19] that uses performance networks for modeling the interplay of processes

on the system architecture. Event streams covering the workload and resource streams de-

scribing the service of resources interact in performance components that are connected

to a network. The resulting transformations enable the derivation of performance data like

resource load values or end-to-end latencies. SymTA/S [7] uses formal scheduling anal-

ysis techniques and symbolic simulation for performance and timing analysis. One prob-

lem of exact methods is their limited ability to capture real workload scenarios, which

may have characteristics that do not fully fit to the parameters of formal approaches. This

problem is less critical in simulation based methodologies where real application stimuli

are easier applicable. Therefore, in many cases timed simulation is used for performance

evaluation.

Transaction level models (TLM) have gained wide acceptance in the system level design

community [4]. Decoupling computation from communication and defining interfaces that

provide specific functions for modeling abstract communication enable stepwise refinement

of TLMs. Nevertheless, TLMs are applied on different abstraction levels and for very differ-

ent purposes [5]. The major abstraction level relevant for architecture exploration is the level

of concurrent processes. However, in both variants, without and with timing information,

the abstraction is too high to capture the influence of the communication on system perfor-

mance. In order to meet the goals of fast evaluation and high precision we concentrate in the

following on models that are very abstract in respect to functionality and precise concerning

architecture.

Ptolemy [3] is a design framework that targets at modeling, simulation and design of

embedded systems with special consideration of different models of computation, however,

with the main focus on specification and code generation. The POLIS system [1] supports

the designer in modeling and verification of applications represented as CFSMs and guides

towards implementation. The commercial tool VCC was based on ideas of POLIS and in-

cluded the support of multiprocessor systems, however with restricted support of application

domains. Metropolis [1] is a design environment for all phases of the design process from

concept to implementation. It addresses also performance evaluation through simulation and

formal methods using a meta-model that can represent different design aspects like function

and architecture models as well as their mapping.

SystemQ [17] applies transaction level modeling in SystemC and uses queuing networks

to cover the behavior of system-level platforms. Click [9] is an approach for specifying packet

processing functionalities in a very efficient way, however, without providing means for the

evaluation of their performance on specific system architectures. StepNP [8] is a network

processor evaluation platform that utilizes Click as input specification. The performance

simulation part of StepNP uses a SystemC TLM, however, includes full functional models

that are executed on ISSs.
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Trace driven simulation techniques have widely been used in the performance evalua-

tion of computer systems in general [16] or in the area of multiprocessor systems [14]. In

[8, 11] traces recorded from the functional level are mapped to the architecture and are used

in the refinement process of the architecture, especially of the communication infrastructure.

These approaches mainly rely on traces related to a given architecture and use them in the

refinement of the system.

In our performance evaluation approach we use traces in a more general way for the

specification of the functionality including the mapping of its subtasks to the architectural

resources and for the description of SoC workloads. Traces as used in our concept can be

considered as a programming model that provides the flexibility and the fast adaptability of

the underlying performance model to architecture modifications. The accuracy of the trace

specification directly determines the precision of the simulation results.

3. The TAPES approach

The main issue for performance evaluation is to gain reliable data of the resource usage

and processing latencies in order to identify bottlenecks in the system architecture. The

system architect, in turn, can use these results for the iterative modification of the system

architecture to meet the design requirements. Figure 1 shows our view of the high level design

flow with performance evaluation as a part of the architecture exploration loop. Starting from

a specification or a fully functional model (like a C program) and taking into account an

initial architecture a performance model is built that makes up the input for the performance

evaluation step. Depending on the results of the analysis the architecture is iteratively modified

until the design requirements are met. The result of this architecture exploration loop is the

specification of an architecture that is used in the subsequent implementation phase. In parallel

to these steps, functional validation is performed to guarantee compliance to the specification.

As performance evaluation is part of the exploration loop the following three main items

have to be considered in respect to both functionality and efficiency of the approach:� In order to allow for the analysis of a high number of alternative system architectures the

effort for generating and simulating the model and for evaluating the results should not be

prohibitive for interactive exploration.� The underlying model has to be adaptable in respect to the number and type of resources

that are allocated in the system architecture.

Spec
Fully functional
Model (e.g. C)

Performance Model
Performance
Evaluation

Architecture
Model

Implementation

Functional Validation

Architecture
Exploration

Fig. 1 High level design flow
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TAPES—Trace-based architecture performance evaluation with SystemC 161� The mapping of the tasks to the resources has to be flexible in order to support easy

investigation of alternative mapping decisions.

3.1. Basic principles

TAPES addresses these requirements by using a system model that precisely covers the

interaction between resources, however, abstracts the execution of the application’s tasks as

much as possible. Precisely, as we do not aim at a functional verification of the system we

replace the processing of the tasks by their execution latencies on the respective resources. The

functionalities of each resource are consequently described as sequences of processing delays

interleaved with external transactions. The specification of such a sequence is denoted later on

as trace. Architecture resources are thus treated as black boxes whose internal structure and

the actual internal processing are disregarded during simulation. This abstraction enables

higher simulation speed than an annotated, fully-fledged functional model and yet allows

capturing the interplay and the sequence of tasks within the system architecture correctly.

In contrast to the computation resources the communication architecture, especially shared

communication resources, cannot be abstracted to the same degree. In order to capture the

dynamics of resource conflicts, caused by competing transactions from parallel resources,

the mechanisms for contention resolution and arbitration are implemented in the simulation

model for the communication resources. Too much abstraction in this case would prevent the

extraction of realistic performance values. The simulation of the TAPES architecture model

thus captures both the data and control flows within the architecture correctly and is therefore

completely sufficient for recording usage data of computation and communication resources,

required for performance evaluation and identification of bottlenecks in the system.

A further important property of our concept is to separate the specification of the sys-

tem’s hardware structure from the definition of its functionality. The simulation model is

dynamically generated at simulation startup time from a library of abstract resource types

like CPUs, memories or accelerators and the communication architecture according to the

user requirements without the need to modify the model’s source code.

The features of TAPES described above enable high efficiency concerning both the sim-

ulation of the model and the modification effort for adapting it to different architecture

variants during the exploration phase. In the rest of this chapter we outline these issues and

the underlying concepts; in the following section we give more information on their actual

implementation.

3.2. Modeling of the structure of the system architecture

The system architecture is build of modules that interact with transactions leaving out details

of the later RTL implementation that are not needed in that early stage in the design flow.

For modeling SoC architectures that consist of an arbitrary number of modules a modular

approach is followed to build the system topology. Currently the approach is targeted at bus-

based SoC architectures with a single system bus and point-to-point connections between

certain modules, as it is shown in Fig. 2. An arbitrary number of modules like embedded

CPUs, HW accelerators or memory blocks can be attached to the system bus. The allowable

maximum numbers of masters and slaves for the actual system bus, however, have to be

taken into account when configuring the system model. Additionally, further modules that

are more application specific and mainly interact via point-to-point links can be added to the

system architecture as well.
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CPU 1 CPU 2 ACC 1 SRAM SDRAM

Buffer
Manager

Path
Dispatcher

Queue
Manager

Pre-
Processor

Post-
Processor

MAC

Fig. 2 SoC architecture

Originally, the approach has been developed with network processors as the main focus.

Therefore, a couple of specific architecture modules from this application domain is available,

like a buffer manager responsible for storing and retrieving variable sized packets in memory,

a queue manager and a pre- and post-processor in the ingress and egress data paths. Figure 2

shows an exemplary, on a standard SoC platform based architecture for a network processor

implementing our FlexPath concept [12]. However, the principles used in TAPES are generic,

so a generalization of the concept is easily feasible.

In order to enable fast changes of the system architecture in the course of the exploration

process, at simulation start-up the hardware structure of the simulation model is dynamically

built up according to the number and type of resources as specified in the system configu-

ration file. I.e. the user does not have to manually adapt the SystemC description to build a

system model for simulation. When interconnecting the resources of the SystemC architec-

ture model the corresponding interface types either bus master, bus slave or point-to-point

communication are taken into account. The system configuration file is also used to adjust

other architecture parameters, as will be shown in Section 4.

For the definition of the architecture functionality, the user has to provide functional

specifications of all modules used in the architecture. This is done with traces that determine

the behaviors of the resources in respect to internal processing as well as the communication

pattern that can be observed externally, as described in the sequel.

3.3. Modeling of the functionality of the system architecture

The simulation model captures the system functionality by specifying traces for all archi-

tecture resources. Each trace represents the sequence of tasks and transactions with other

resources that have to be executed in that resource to model the processing of a specific data

item. Depending on the partitioning decision, each resource contains one or more traces that

are related to different types of processing sequences. Figure 3 shows an example for the

processing of an IP packet in an embedded CPU of a network processor.

The processing starts with two read operations, one for getting the reference of the packet

to be processed, the other for loading the first bytes of the packet containing its header. After a

t

R R W W WW

Proc Proc Proc

RFig. 3 Trace example
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certain processing time—e.g. for checking the validity of the packet—a lookup is performed,

represented by a write to a coprocessor and a read to return the result. Then packet processing

is continued with an intermediate write operation and finally the modified parts of the packet

are written back to the memory and the packet reference is sent e.g. to the queue manager.

In general, a trace in TAPES is a sequence of trace primitives representing either the internal

processing of the associated resource or an interaction with other architecture resources,

which corresponds directly to a call of a SystemC transaction. In the target resource of the

architecture, the call of a transaction in turn triggers the execution of a specific local trace. In

addition to these basic trace primitives there are also macros that are translated at simulation

run-time into a sequence of basic trace primitives. This trace driven interaction of architecture

resources thus enables the simulation of the system behavior.

As the transactions of all architecture resources working in parallel are superposed on

shared resources like bus or memory, additional delays are generated as consequence of com-

peting accesses. This effect has also to be reproduced by the simulation model. Therefore, the

models for shared resources implement the corresponding mechanisms for the resolution of

conflicting accesses as their real world counterparts. In respect to our trace-driven simulation,

this leads to a stretching of the traces, as a consequence of arbitration latencies as well as

processing time in the called modules. Figure 4 depicts this for the beginning of the trace

shown in Fig. 3.

Figure 4 also shows the blocking interaction of a CPU with an accelerator. In a write

transaction the required data is first written to the accelerator followed directly by the read

of the result. The write operation, when finished, triggers the execution of the corresponding

accelerator trace; the subsequent read transaction blocks the CPU until the accelerator

has finished and the result is transferred back to the CPU. Thus, trace execution in called

modules prolongs trace execution of the CPU as well. Note that our simulation approach

also supports non-blocking accelerator calls.

Another consequence of the functional abstraction is that no real data is exchanged during

simulation. Only tokens representing a reference to the data currently being processed are

transferred in the system model. For network processor architectures, the current main appli-

cation domain of TAPES, this is a packet. In alternative applications it might be a video frame

or more generally an external request. For simplicity, we leave out these alternative types of

data in the following description and use “packet” as placeholder for the data to be processed.

The system functionality and its execution can formally be specified in the following

way. The behavior of a resource Ri is determined by the set of traces Fi . Each trace T j,i is

numbered and represents a specific sub-functionality that is implemented on resource Ri . A

trace T j is an ordered list or vector of trace primitives pl, j from the trace primitive set P that

t
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Proc

t

SRAM
Bus

Access Bus Access

Proc

W R

Bus
Access

Write
to Acc

Bus
Acc.

Read
from Acc

t

Accelerator Proc

SDRAM

Fig. 4 Transformation of the CPU trace during simulation
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defines the elementary operations available in the simulation approach. P is the set union

of different primitive sets representing internal processing (Pp), communication with other

modules (Pc) or denoting macros (Pm).

Fi = {T1i , T2i , . . . , Tni } (1)

Tj = (p1, j , p2, j , . . . , pk, j ), pl, j ∈ P (2)

P = Pp ∪ Pc ∪ Pm (3)

At simulation run-time, processing primitives pp ∈ Pp are mapped to the execution of the

wait() function with a specific delay value. Communication primitives pc ∈ Pc in turn lead

to the call of an interface function f() of the communication channel. Depending on the

model of this channel, its load situation and the availability of the slave resource (Rs) of the

transaction, this will lead—with a certain delay—to the call of the interface function g() of

the slave interface of Rs . Eventually, g() triggers the execution of trace T h,s in Rs .

pp → wait(Delay) (4)

pc → IFc :: f ( ); IFc :: f ( ) → IFs :: g( ); IFs :: g( ) → Th,s (5)

The definition of the traces and their execution as described hitherto is static, i.e. all packets

experience the identical treatment. Macros pm ∈ Pm are special trace primitives that are

translated by a function tm() at simulation run-time into a temporary trace T tmp consisting

of processing or communication trace primitives that is then executed in the usual way.

tm (pm, ID) → Ttmp (6)

Ttmp = (p1,tmp, p2,tmp, . . . , pk,tmp), pn,tmp ∈ {Pp ∪ Pc} (7)

The parameter ID of function tm() is a reference to the packet token, which enables access of

annotated meta data, like the packet size or other specific information, that can be taken into

account when T tmp is generated. The interpretation of macros at simulation run-time makes

up a special feature that allows capturing an individual treatment of packets.

The traces of the architecture’s resources constitute the user interface for the configuration

of the model functionality. We will have a closer look onto the list of concrete trace primitives

and how they are evaluated during simulation run-time in Section 4.2.

The trace specification for the system architecture is currently a manual process. The two

main issues of this task are the identification of contiguous instructions represented in the

model by processing primitives and the evaluation of the associated compound processing

latencies. This process has to take into account the binding decision that determines the

interleaved communication primitives. The timing behaviors of the different resources can

either be retrieved from data sheets, e.g. for memory or specific accelerator blocks, or by

recording the activity of embedded CPUs with a logic analyzer in combination with a disas-

sembler, allowing a sequencing of the program execution. A simpler starting point for trace

specification are packet processing benchmarks like [15] that give typical instruction profiles

for specific network processing tasks.

Nevertheless, this approach enables high flexibility concerning modifications of the bind-

ing decision. If a sub-function has to be moved during architecture exploration from SW to a

specific HW accelerator, in the simulation model the corresponding processing primitive(s)
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in the CPU traces is/are replaced by communication primitives that capture the transaction

with the accelerator module. Further on, the accelerator module has to be registered in the

system configuration and characterized by a suitable trace file.

As our approach abstracts processing by its corresponding latencies, control dependencies

cannot be resolved at simulation run-time like in the real system. This is particularly important

for our main application domain networking, which is heavily control dominated. On the left

hand side of Fig. 5 the problem is demonstrated for an application containing a branch that

determines further processing depending on the evaluation of a condition A.

In our approach we solve this problem by specifying independent traces for both cases, A

being true and false. This is shown in Fig. 5 as transformation of a task graph. In general, for

the resolution of an arbitrary number of control dependencies in an application, we evaluate

all possible patterns of conditions resulting in graphs without conditional branches. Then

specific traces are defined for each combination.

In respect to the work load that stimulates the simulator, however, this procedure means

that each incoming packet has to be annotated with the information to which of the cases

it belongs. In particular, this identifies the initial trace to be started in the CPU that then

determines the complete subsequent processing in the system. For synthetically generated

workloads, appropriate stimulation patterns can be generated in an arbitrary way. If real world

traffic is available it is preprocessed offline and annotated, so that it can be replayed and used

as load for the simulator as often as needed.

4. Implementation

Following a strictly modular approach is the natural consequence of the desire to make the

simulation model easily adaptable to different architecture configurations. This applies to the

hardware structure that encompasses the architecture resources including the communication

architecture as well as to the mapping of the functionality.

4.1. Specification of the system architecture

As described above our approach is based on SystemC TLM, which separates communica-

tion from computation. This is done by specifying the interaction between components via
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interfaces. An interface is an abstract class that declares methods that are provided by the

interface as abstract function calls. The implementation of these methods, however, is defined

in the hierarchical channel that is derived from the interface. A module that contains a port

corresponding to the respective interface and that is connected to the hierarchical channel

can thus interact with it by calling the appropriate interface methods. This allows modeling

the communication mechanism, e.g. a bus system with its protocol, independent from the

modules that are connected to the bus.

In our evaluation approach we currently support communication architectures with a

single common system bus and a specific point-to-point connection network, including also

interrupt lines. To implement this communication architecture we have defined the following

interfaces types:� bus master if: implements read/write access of master modules on the bus

class bus–master–if : public sc–interface{
public:

virtual int read(bus–request &request)=0;
virtual int write(bus–request &request)=0;

};� bus slave if: implements arbitration (read request / write request) and read / write accesses

to the slave

class bus–slave–if : public sc–interface{
public:

virtual int request–read(int source)=0;
virtual int request–write(int source)=0;
virtual bool read–transfer(bus–request &request, int
bus–clock)=0;
virtual bool write–transfer(bus–request &request, int
bus–clock)=0;

};

The parameter bus clock is used in the bus slaves to calculate response times synchronized

to the frequency of the bus.� direct comm if: implements point-to-point read / write and interrupt on any resource type

(where required)

class direct–comm–if : public sc–interface{
public:

virtual int interrupt(int source, int trace–id)=0;
virtual int set–indication(int source)=0;
virtual int remove–indication(int source)=0;
virtual void write–data(dc–request &request)=0;
virtual void read–data(dc–request &request)=0;

};
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Fig. 6 SystemC model of network processor architecture

Figure 6 shows the model in SystemC notation corresponding to the architecture from

Fig. 2 and identifies the type of each interface according to the list given above. The module

types shown above the SoC bus, CPUs, accelerators and memories, are either pure bus masters

or slaves whose number can easily be varied. The direct comm if of the CPUs is used to signal

interrupts from accelerators or indicate the availability of data from the path dispatcher. The

components depicted below the SoC bus are more application specific and are related to a

certain number of particular data flow models that are mainly controlled via point to point

links between them. The issue of programmability of the different module types via traces

will be addressed in the subsequent section.

For a maximum reuse of the basic functionalities and a stepwise specialization concerning

their interfaces and the execution of traces, the different resource types are derived in the

class hierarchy shown in Fig. 7.

sc_interface sc_module

direct_comm_if

res_base

res_slave

res_masterslave

res_s_mem

res_ms_cpu

res_ms_acc res_ms_bmg

res_ms_qm

res_ms_pd

res_b_pre

res_b_post

bus_slave_if

Fig. 7 Class hierarchy of
architecture modules
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The class res base already contains all necessary functions for reading in the trace specifi-

cation and for measuring the activity of the module. The derived module type res slave in turn

implements additionally the operations of a bus slave and a trace execution process limited

to trace primitives relevant to a bus slave. The next extension is then a combined master and

slave (res masterslave) that has the full capabilities of trace execution. The CPUs depicted

in Fig. 6 actually are of type res masterslave, however, the slave properties are deactivated

in the final derivation of the CPU class. In general, the specific properties of the different

module types are finally adjusted in the leaves of the class hierarchy. The implementations

of the interface functions in the particular resource types allow controlling the interaction

between resources and the bus respectively, and triggering the execution of the required traces

realized as concurrent processes.

A modular approach is followed for constructing the HW structure of the current simulation

model dynamically at elaboration time, taking into account the supported communication

infrastructure and the associated SystemC interfaces. The actual settings to be used for

the simulation are determined via an XML system configuration file that is read in and

interpreted at simulation startup. The file contains sections defining the system architecture

and its resources, the measurement and logging data to be output during simulation and the

traffic stimuli. This concept allows for an easy adaptation of the model to different architecture

Fig. 8 Sample system configuration file
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configurations simply by changing parameters of the configuration file. Figure 8 shows the

main parts of a sample configuration file.

The <architecture> section specifies the system architecture and all its resources with

their parameters, including number and speed of the input ports, base clock frequency and

all resource specific parameters. In deviation from the general system clock defined in the

<basic> section, special clock frequencies can be adjusted for CPUs, accelerators and the bus.

This allows scaling all latencies concerning both data transfer and processing in the system.

The size of queues contained in some of the resources is also specified in the corresponding

sections of the system configuration file.

The <measurement> tag determines which simulation data should be captured in a simu-

lation results file for later evaluation. Different levels of detail can be measured per resource

type. This encompasses load values of resources including the bus, averaged over a certain

time interval, latencies of packets and processing times consumed in different resources or

fill levels of queues contained in the system. It is also possible to activate different levels

of verbosity messages for observing the processing within the system, e.g. for debugging

purposes. The section delimited by the <traffic> tag determines the traffic stimuli for the

simulation. It may either contain the description of artificial traffic patterns to be generated

during simulation or the designation of preprocessed traffic files.

For each type of resource the required number of instances is generated and connected with

each other or with the bus. A specific numbering scheme is used to unambiguously identify

the different modules of the system architecture, what is necessary for both the establishment

of the internal connections and the specification of the target modules as part of the trace

definitions. According to the module numbers the bus model directs the transfer request to

the correct sc port<> instance in the vector of bus ports. For modeling the interplay of the

modules in the ingress and egress data path of the architecture, a data flow model is used that

is partially incorporated in the method definitions of the direct comm if interfaces and thus

provides less flexibility concerning trace execution.

For bus communication, a concept has been chosen that allows the usage of bus models

on different levels of abstraction. In addition to an abstract, timed model, a cycle-accurate

model has been developed that can be used for a more detailed investigation of bottlenecks

in the system. For this purpose specific wrappers are available that adapt the high level

models of bus masters and slaves to the detailed bus. Both bus models capture the behavior

of a CoreConnect PLB bus including a priority-based arbitration scheme, pipelined address

phases, split transactions and concurrent transfers on the parallel read and write busses. Bus

locks are not supported in both models, while timeouts are covered only in the cycle accurate

version. Common transaction level models are located on a higher level of abstraction where

these effects are frequently disregarded, leading to lower precision of simulation results.

4.2. System functionality

The functional flexibility is given by the trace-based approach as described in the previous

section. Each individual resource instance used in the system architecture requires a list of

traces specifying its functionality. On the instantiation of each architecture module a file

containing the traces is read and verified, that are later on executed during simulation. Thus,

the system functionality can be modified just by changing the trace files, i.e. without the need

to make any modification of the SystemC source code of the simulation model.

A module trace is composed of an arbitrary long sequence of trace primitives that is

delimited by the End-of-Trace primitive. Table 1 contains an overview of all trace primitives

that are currently used for specifying the functionalities of the different resource types. In
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Table 1 List of trace primitives

Code Trace primitive Type Parameters

BRS Bus Read specific size C Data amount, target, trace

BRV Bus Read variable size M Reference to packet info

DRS Dcomm Read specific size C Data amount, trace

DRV Dcomm Read variable size M Reference to packet info

BWS Bus Write specific size C Data amount, target, trace, set semaphore

BWV Bus Write variable size M Reference to packet info

DWS Dcomm Write specific size C Data amount, trace

DWV Dcomm Write variable size M Reference to packet info

DEL Processing P Latency

INT Issue Interrupt C CPU number, interrupt service routine

SEM Semaphore P Slave number

EOT End of trace – –

the third column the type of the primitive is indicated, C for communication primitive, P

for processing and M for Macro. Not all primitives are allowed in each resource type. This

depends for example on the attachment to the communication architecture or the role as bus

master or slave.

The latency value of the processing primitive represents the duration of a certain processing

subtask, specified as the number of instructions. The actual time that the resource is using in

a SystemC wait() statement is then dynamically calculated taking into account the current

clock frequency and the number of clock periods that are needed per instruction. Currently,

processing latencies are fixed values contained in the trace definition, i.e. all packets being

processed experience the same delay. Variable processing latencies needed for capturing

data dependencies could easily be implemented by an additional primitive that takes the

instruction count from to the annotated information accompanying each packet.

The communication primitives specify both the target module and the trace to be executed

there. They also designate the amount of data that would be transferred in the real system,

a figure that is used in the communication infrastructure to calculate transfer latencies. The

token identifying the packet currently being processed is part of the trace primitive as well.

Read and write operations may be denoted as blocking or non-blocking. Communication

primitives are translated at simulation run-time into a call of an interface function. In case

of a bus-based transaction the bus model with its protocols is activated. If arbitration was

successful the trace is triggered in the slave module after the bus transfer time. Otherwise the

initiating master will wait for a certain back-off time and then retry the transaction. In case

of a transaction over a direct comm if the method in the target module is directly activated.

The variable size primitives have been defined with respect to our main application area

packet processing, where variable sized packets have to be transferred to and from the mem-

ory. They are actually macros that retrieve the data amount via an indirect reference to the

annotated information of a packet. Furthermore, they take into account the memory archi-

tecture and the data structures that are used for storing packets. Packets are assumed to be

saved as a variable number of fixed-size data segments that are linked together in a linked

list. Data segments and pointers may be mapped onto different memories, e.g. in external

SDRAM and in on-chip SRAM respectively. Therefore, at simulation run-time translation

functions map the macros to specific sequences of communication primitives that correspond

to the memory accesses needed for storing or retrieving the current packet. Different packet

storage strategies can thus be investigated by exchanging the translation functions used in
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the simulator. Moreover, it is easy to replace these translation functions for application sce-

narios with specific memory management strategies. Variable sized data transfers without

packet segmentation and linkage can be supplemented in the same way as data dependent

processing.

Interrupts can be used in accelerators and on some of the modules in the ingress data

path to cause CPUs to execute a specific trace as interrupt service routine, e.g. for reading

back data or fetching packets for processing. The CPU number as parameter of this primitive

determines on which d comm port the interrupt will be issued; a further parameter designates

the interrupt service routine to be executed. If an interrupt is called during normal execution

of a trace, the trace execution is suspended and resumed after finishing the interrupt trace.

The semaphore trace primitive is of special use to model data dependencies when per-

forming parallel tasks. This is shown in the task graph fragment shown in Fig. 9. Task m2

is assumed to be offloaded from the CPU and executed in an acceleration module. Further,

task m3 depends on the results of m2, i.e. it cannot be processed in the CPU unless the results

from the accelerator are available.

Thus, tasks m0, m1 and m3 are part of the CPU’s processing trace, whereas m2 is contained

in an accelerator trace that ends with an interrupt. In order to enforce the data dependency

during simulation, a semaphore trace primitive is inserted in the CPU processing trace before

the primitive corresponding to task m3. When the CPU calls the accelerator, the semaphore

is marked active. Conversely, it is deactivated after processing the CPU’s interrupt service

routine trace, which is triggered by the last element of the accelerator trace. If trace execu-

tion in the CPU reaches the semaphore still being in active status, trace processing will be

suspended until the semaphore is deactivated. However, if the interrupt has been processed

before trace execution in the CPU reaches the semaphore no suspension will occur. This

mechanism supports one outstanding call per accelerator and per CPU. Figure 10 shows on

the left hand side the contents of the trace files for both the CPU and the accelerator corre-

sponding to the example of Fig. 9. The “Rd trace” of the accelerator is executed before the

actual bus transfer and can be used for modeling internal read latencies.

The value of 32 contained in the primitives of the CPU traces identifies the accelerator

according to the applied numbering scheme. The third integers in the “W” and “ISR” lines

designate the trace to be executed in the accelerator, the final ‘1’ in the bus write command

states that the semaphore should be set for the accelerator.

If, as an alternative architecture, the accelerator should be avoided and task m2 be mapped

to the CPU, the only changes to the system setup would be the modification of the CPU

trace file as shown on the right hand side of Fig. 10 and the modification of the number of

accelerators in the system configuration file.
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The influence of processor caches in respect to memory accesses is currently captured

manually during trace definition. Considering the locality of the memory accesses is feasible

to a reasonable extent for our specific network application scenarios. A trace for an embedded

processor without cache could look like the trace shown in Fig. 11.

Interaction between modules via direct comm if is less general than in the case of the

bus-based transactions. Examples contained in Fig. 6 are the data transfer from the MAC to

both pre-processor and buffer manager that may start only if both blocks are ready, or the

backpressure mechanism to the queue manager in the egress data path. Consequently, the

implementation of the interface functions in each of these more specialized modules has to

be tuned to the respective model of data flow that they belong to.

Modeling of the system workload is very application specific. In our case the stimuli are

made up of a sequence of arriving packets for each input port. The characteristics are mainly

the interarrival times of the packets, the information what trace has initially to be triggered and

some other data that has to be annotated like its size or some other packet specific information

that is accessible in the simulator via the packet token. Packet stimuli are read by the source

module from traffic files, individually for each port, and forwarded to the MAC according

to the specified timing. Such a traffic file can be considered as a particular type of trace that

constitutes the external triggers of the required functionality. Traffic files may be generated

artificially with specific characteristics like packet size or packet rate, in order to investigate

the system’s sensitivity to these properties. However, the system can be simulated under real

world workload as well. For this purpose, traffic that has been recorded in real networks and

is available in pcap format can be preprocessed and stored in appropriate traffic files.

4.3. Simulation environment

For a systematic investigation of the system performance and its dependency on certain

parameters, additional helper tools have been developed. Figure 12 shows an overview of
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the current simulation environment that is part of the performance evaluation block depicted

in Fig. 1. The main components of the environment are the simulator that implements the

TAPES approach described hitherto, the executor that is used for simulation automation and

the extractor program for preparing the results.

On simulation startup the simulator reads in the input files marked grey in Fig. 12: The

system configuration file containing the complete specification of the system to be simulated

and of all outputs that have to be generated; the trace files with the functional description of

the model, one for each of the architecture resources; the traffic stimuli for each input port

if preprocessed pcap traffic files should be used. Then the architecture simulation is carried

out and the measured data are written in a simulation output file. Such a simulation generates

results for one particular configuration of the system.

In order to investigate the influence of specific architecture or workload parameters on

the system performance, the executor is used to step through the desired range of parameter

values and to iteratively carry out the corresponding simulations. The executor is controlled

by a measurement configuration file, which is essentially an extended version of the system

configuration file. It determines the complete configuration of a basic system architecture

and those parameters that have to be varied in a series of simulations. Based on this speci-

fication the executor repeatedly generates valid system configurations for the corresponding

simulation points and starts the simulator. Moreover, it allows the execution of batch jobs

each consisting of such a sequence of simulations, enabling extensive investigations without

the need for user intervention.

Finally, we use an extractor program that helps in the analysis of the simulation results.

It is aligned with the simulation capabilities of the executor and can evaluate individual or

series of simulations. According to the user’s input requirements, it parses the simulation

output, extracts the selected measurement results and prepares them for presentation.

5. Experiments

The following experiments are taken from the network processor domain and encompass

the exploration of a network processor SoC architecture using a common SoC bus and

standard components as shown in Fig. 2. The path dispatcher, pre-processor and post-

processor being more specialized modules are disregarded in this study. Starting from a pure

Springer



174 T. Wild A. Herkersdorf et al.

CPU 1 SRAM SDRAM

Buffer
Manager

Queue
Manager

MAC

Fig. 13 Basic NP architecture

SW-based solution we explore different measures for performance improvement like adding

an additional CPU, increasing clock frequencies, adding a specific DMA engine or modifying

the memory architecture. This is accompanied by a bottleneck analysis of the architecture

resources. All simulations carried out in the sequel are using the abstract PLB bus model.

Figure 13 shows the corresponding architecture that is stepwise modified in the following.

It is assumed that the architecture has to be tailored to an IPv4 forwarding application

with the following data flow in the system: Packets are first stored in the memory architecture

in segmented way. Depending on the length of the packet and the size of the segments a

corresponding number of segments have to be stored in memory and linked together using

linked lists. In the course of the exploration we will study different alternatives for the storage

of packet segments and linked lists, either in off-chip SDRAM or in on-chip SRAM or in

a combination of both. The actual packet processing is carried out in the CPU: First, the

packet descriptor is fetched from the buffer manager and then the packet header is read from

memory. After processing, modified data is written back and packet descriptors are sent to

the queue manager, which determines when packets have to be retrieved from memory and

sent out to the target network interface.

The stimulations are done with uniform traffic consisting of equally sized packets with

equidistant interarrival times which are determined by the offered input data rate for each

port. We assume identical input packet streams on 4 parallel Gigabit Ethernet interfaces with

an equal distribution of the destination port of the packets. The packet length is one of the

parameters whose influence on the architecture will be studied during the exploration. Unless

otherwise specified, CPUs work with a frequency of 500 MHz and need 1.4 clock cycles

per instruction. The processing scenario for IP forwarding [15] is modeled with 400 CPU

instructions per packet, leading to a consumption of 560 clock cycles.

The memory architectures used in the first exploration steps consist of an external SDRAM

memory for the storage of packet data and an on-chip SRAM block for the linked lists. We

start with a pure SW solution where processing and packet reception/transmission including

the associated memory management are completely done by the CPU without DMA support.

I.e. in this configuration we neither have a buffer manager nor a queue manager and the

MACs are directly attached to the bus. The CPU fetches only packets from a MAC if the

previous packet is completely processed; the CPU is not interrupted by new packets that have

been stored in the MAC receive buffer.

Figure 14 shows the output data rate (Mbps) and the packet throughput (Mpps) as a

function of the input data rate and the offered packet load with the packet size as parameter.

The results show that the throughput of this solution gets into saturation between 200 Mbps

(64 bytes) and 400 Mbps (1500 bytes). While large packets achieve an absolute higher data

rate, it can be seen that the throughput in terms of processed packets per second grows with
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Fig. 14 Performance of pure SW-based solution (1 CPU, 500 MHz)
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Fig. 15 Performance increase by 1 GHz CPU (left) and a second 500 MHz CPU (right)

decreasing packet size. This is caused by the effort for packet reception and transmission that

is proportional to the packet size, thus limiting the budget remaining for the actual packet

processing.

Now we try to increase performance by two alternative measures, either doubling the CPU

clock frequency to 1 GHz or providing a second 500 MHz CPU. Figure 15 shows the results

of these modifications relative to the base architecture.

The benefit from the 1 GHz CPU is very small because only the very limited share of

CPU time spent for actual processing can profit from the increased clock speed. The lion’s

share of instructions is required for data transfers with the MAC and the memory that are

not accelerated from this measure. This applies especially for long packets. The solution

with two CPUs allows independent processing and data transfers on the PLB bus with its

two separate read and write buses, enabling higher performance. However, with increasing

packet sizes the probability of contention on the shared resources for the transfers is rising

and thus reducing the performance gain from the additional processor.

Now we turn back to the single 500 MHz CPU, however, offload it from the packet

reception and transmission tasks including the segment management by introducing buffer

and queue managers in the system architecture. The buffer manager autonomously receives

and transmits packets without CPU involvement so that the CPU is only responsible for the

pure packet processing task. Furthermore, this module contains a queue for packets that have

been stored in memory and are ready for processing.
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Fig. 16 Performance of architecture with buffer and queue managers (left); relation of throughput of buffer
manager enhanced architecture to pure SW solution (right)

The left diagram of Fig. 16 shows that throughput of this configuration is by a factor of

two to three higher compared to the reference architecture. The maximum throughput is the

same for 64 and 128 byte packets. For longer packets, however, the corresponding figure

is significantly lower. The diagram on the right hand side shows the resulting performance

increase as a function of the offered load. An accelerating effect is noticeable as soon as

the pure SW solution saturates, reaching its peak when the enhanced architecture runs into

overload as well. The maximum acceleration is much higher for long packets compared to 64

byte packets because the associated memory management effort is contributing significantly

to the processor load in the pure SW solution. We can clearly state that intelligent DMA

(buffer and queue managers) helps substantially to improve packet processing performance

without loosing flexibility.

As the CPU processing effort is independent of the packet length, similar maximum

throughput values for all packet lengths would be expected. However, the results for packet

sizes of 256 and more bytes are significantly lower than for 64 and 128 bytes. This observation

gives evidence that the CPU is not the bottleneck in these cases. In order to find the reason

for this behavior further data are extracted from the simulation log files that can help explain

the effect and give clues for further improvements of the architecture. In Fig. 17 the load

values from CPU and SDRAM memory block are shown as a function of the sum input data

rate of all 4 ports.
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Table 2 Simulation run-times

Simulation run-times in sec (45,000 packets per entry)

pure SW pure SW Buffer mgr. Buffer mgr.

Bytes pure SW 2 CPUs 1 GHz Buffer mgr. SRAM 2 CPUs

64 184 218 196 119 83 122

128 310 369 322 173 147 168

256 574 682 593 260 252 273

512 1,098 1,308 1,115 454 418 448

1,024 2,140 2,597 2,169 815 752 836

1,500 3,152 3,878 3,160 1,196 1,116 1,185

� 7,458 9,052 7,555 3,017 2,768 3,032

The left diagram confirms that the CPU is not the bottleneck for the traffic with packet

sizes of 256 bytes or more, in fact it gets significantly idle with the big packets. The reason

for this effect can be found in the SDRAM load, shown on the right hand side, that runs into

saturation as a consequence of the higher memory bandwidth requirements associated with

long packets.

We now want to challenge these bottlenecks by simulating two alternative architectures:

In the first experiment the available memory bandwidth is raised by using a pure SRAM-

based memory architecture, i.e. administrative as well as packet data is stored in SRAM.

The second alternative is increasing processing capacity by introducing a second CPU. In

the former case we would expect that the throughput for longer packets saturates at a higher

value, in the latter experiment the maximum value for short packets should improve.

The two diagrams shown in Fig. 18 confirm these assumptions: In the SRAM-based

architecture all measurements lie on the same curve that ends in the saturation of the CPU.

The memory bottleneck is not noticeable any more. In the dual CPU architecture the maximum

performance for 64 bytes is doubled, the throughput for 128 byte packets is now limited by

the memory bandwidth. Note that the saturation values for the bigger packets are identical

to the single CPU architecture, as was expected.

For each simulation point shown in the diagrams above, 5,000 packets have been simulated,

making up 45,000 packets for each packet size curve and a total of 270,000 packets per

diagram. Table 2 shows the simulation run-times for the different packet sizes carried out for

each experiment. The simulations have been performed on an IBM ×Series 346 Server with
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Fig. 18 Performance of a pure SRAM-based architecture (left) and a dual CPU solution (right)
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a Xeon 3.2 GHz Processor under Linux Kernel 2.6.13. Note that the simulation software

including the SystemC library (Version 2.0.1) has not been compiled for this processor

architecture neither was it optimized.

It has to be pointed out that the modifications of the system architecture carried out

during the above exploration implied mainly the change of configuration parameters of

our simulation model and a new simulation run. The introduction of the buffer and queue

managers into the originally pure SW-based architecture required also the removal of four

trace elements in the CPU trace specification and the modification of two trace elements in

that of the buffer manger. Besides these minor changes that are possible with very low effort

no further modifications were necessary in the simulation model.

6. Conclusions and outlook

In this paper we have presented TAPES (Trace-based Architecture Performance Evaluation

with SystemC) as an efficient approach for performance evaluation as part of the architecture

exploration process. The method uses a trace driven simulation technique and is based on

SystemC transaction level modeling. Describing the system functionality on an abstract level

and capturing the interaction of the system resources enables a flexible and nevertheless

precise investigation of SoC architectures. A special feature of the concept is the low effort

to modify the underlying model by changing system configuration and trace files, which

describe the hardware architecture and the functionality respectively. As there is no need to

modify the associated SystemC code and due to the functional abstraction short turnaround

times can be achieved. We have demonstrated the efficient use of the TAPES concept with

the exploration of a network processor architecture. Nevertheless, the approach is generic in

a way that it can also be applied in different application areas other than packet processing.

Future work will be the support of more heterogeneous communication architectures with

several buses or NoCs and of SoC architectures that are dynamically adaptable to failure

and load conditions at run-time. A major extension will also be the realization of a GUI that

further eases configuration and measurement evaluation.
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