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1 Introduction

Denote by KP− the theory obtained from the usual Kripke–Platek set theory KP
by taking away the foundation scheme. By fragments of KP we mean subtheories
of KP that include KP−. These fragments arise naturally in the metamathematics of
α-recursion theory, where one investigates the amount of foundation needed to prove
various theorems in this subject.

Some research has been done on fragments of KP. An investigation of the log-
ical strength of fragments of KP can be found in Ressayre’s notes [21], where he
showed that the hierarchy of �n-foundation schemes is strict (cf. Theorem 4.15
below). Studying recursion-theoretic properties in fragments of KP is also called
γ -recursion by Lubarsky [13]. He provided a study of models of KP− in which
�n-foundation fails and ωCK

1 represents the least non-recursive r.e. degree in the
sense of the model. In Lubarsky’s paper, Friedman’s solution [7] to Post’s prob-
lem for β-recursion was adopted to prove a splitting theorem. The proof-theoretic
and set-theoretic aspects of fragments of KP were investigated by Cantini [3,4] and
Rathjen [18–20]. Cantini [4] studied KP−

1 , i.e. KP
− + infinity + �1-foundation, and

identified the smallest�-model for it. Here, a�-model for KP−
1 is some level Lα of the

constructible hierarchy which satisfies all �1 formulas provable from KP−
1 . Rathjen

gave [19] a proof-theoretic analysis of primitive recursive set functions in the axiom
system of KP− + infinity + �1-foundation (which he called �1-foundation in his
papers), and characterized the logical strength of KP− + infinity + �n+2-foundation
by the smallest ordinal α such that Lα is a model of all �2 sentences provable in the
theory [18].

The metamathematics of α-recursion theory is partly motivated by the research in
reverse recursion theory, and more generally, the metamathematics of classical recur-
sion theory. In reverse recursion theory, we have models of arithmetic with limited
induction, the analogue of foundation in arithmetic. Paris and Kirby [17] showed that
�n+1-induction (I�n+1) is strictly stronger than �n+1-bounding (B�n+1), and that
�n+1-bounding is strictly stronger than�n-induction.1 In fact, B�n+1 is equivalent to
I�n+1 modulo the totality of exponentiation, as shown by Slaman [26]. Themetamath-
ematics of classical recursion theory was started by Simpson, who observed that I�1
is sufficient to prove the Friedberg–Muchnik theorem. Then Mytilinaios [15] showed
that I�1 is enough for finite injury (0′-priority) arguments, and Mytilinaios and Sla-
man [16] showed that in I�2, one can carry out infinite injury (0′′-priority) arguments.
Although the original proof of the Sacks Density theorem seems to involve more than
infinite injury, Groszek et al. [8] showed that surprisingly, B�2 is sufficient for the
Density theorem.

α-recursion theory studies the computational properties of the admissible Lα’s,
i.e., those that satisfyKP. Sacks and Simpson [22] showed that the Friedberg–Muchnik
theorem is valid in every admissible Lα . The Splitting and Density theorems were
established by Shore [23,24]; they hold in every admissible Lα . The existence of a
minimal pair is a typical example of an infinite injury argument in classical recursion

1 B�n+1 essentially says that the �n+1-formulas are closed under bounded quantification.
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theory. Yet, whether it is true in every admissible Lα is open. See the papers by Lerman
and Sacks [12], Maass [14] and Shore [25] for some partial results.

α-recursion theory has influenced the metamathematics of classical recursion the-
ory. A subset of Lα is said to be regular if its intersection with any α-finite set is
α-finite (where the α-finite sets are precisely the elements of Lα). The notion of regu-
lar sets originated from Sacks and Simpson [22], and Shore [23]. A cut is an example
of non-regular set. It is known [5] that the degree of a cut can be a minimal degree,
and it can also form a minimal pair with some ∅(n). Shore’s blocking method [23,24]
was introduced to solve the Splitting and Density problems in admissible Lα’s. The
Splitting problem in reverse recursion theory was solved using a similar method [15]
in I�1.

There is much overlap between the techniques and results of α-recursion theory
and the metamathematics of classical recursion theory. The reason for having such
overlap is yet to be found. The research in this paper involves nonstandard models of
set theory. These models are “between” those in nonstandard arithmetic and those in
α-recursion theory. It is an initial attempt to understand the mysterious connections
between these two areas.

The structure of the paper is as follows: Sect. 2 lists some basic definitions, axioms
andpropositions that are useful later. Sect. 3 applies these propositions to theSchröder–
Bernstein theoremand shows that this theorem is provable in�1-Foundation. In Sect. 4
we discuss the L-hierarchy in models of fragments of KP and apply this hierarchy to
separate �n-Foundation and �n-Foundation. And Sects. 5 and 6 are devoted to the
Friedberg–Muchnik theorem and the Splitting theorem respectively and prove they
hold in any model of KP− + �1-Foundation + V = L .

2 Preliminaries

2.1 Fragments of KP

Kripke–Platek set theory (KP) consists of the Extensionality, Foundation, Pairing and
Union axioms together with �0-Separation and �0-Collection:

(i) Extensionality: ∀x, y[∀z(z ∈ x ↔ z ∈ y) → x = y].
(ii) Foundation: If y is not a free variable in φ(x), then [∃xφ(x) → ∃x(φ(x)∧∀y ∈

x¬φ(y))].
(iii) Pairing: ∀x, y∃z(x ∈ z ∧ y ∈ z).
(iv) Union: ∀x∃y∀z ∈ x∀u ∈ z(u ∈ y).
(v) �0-Separation: ∀x∃y∀z(z ∈ y ↔ (z ∈ x ∧ φ(z))) for each �0 formula φ.
(vi) �0-Collection: ∀x[(∀y ∈ x∃zφ(y, z)) → ∃u∀y ∈ x∃z ∈ uφ(y, z)] for each �0

formula φ.

Here, �0 formulas have only bounded quantifiers.
KP does not contain the Infinity axiom. If it is necessary for our theorems, then we

will state the Infinity axiom explicitly.

(vii) Infinity: ∃x[∅ ∈ x ∧ ∀y ∈ x(y ∪ {y} ∈ x)].
Foundation is the dual of Induction.

123



902 S.-D. Friedman et al.

(viii) Induction: If y is not a free variable inφ(x), then [∀x(∀y ∈ x φ(y)) → φ(x)] →
(∀xφ(x)).

Clearly, for every class
 of formulas,
-Induction holds if and only if¬
-Foundation
holds, where ¬
 = {¬φ : φ ∈ 
}.

We use KP− to denote KP without Foundation (i.e. Clauses (i), (iii)–(vi)). By
fragments of KP, we mean systems obtained from KP by restricting the foundation
scheme.

Proposition 2.1 KP− proves the following:

(1) Strong Pairing: ∀x, y∃z (z = {x, y}).
(2) Strong Union: ∀x∃y (y = ⋃

x).
(3) �1-Separation and �1-Collection.
(4) Strong�1-Collection: Suppose f is a�1 function. Ifdom( f ) is a set, then ran( f )

and graph( f ) are sets.
(5) Ordered Pair: ∀x, y∃z (z = (x, y)).
(6) Cartesian Product: ∀x, y∃z (z = x × y).

Proof The usual proofs [2, Sects. I.3 and I.4] work in KP−. ��

2.2 The Lévy hierarchy

In Proposition 2.1, �1 and �1 are as defined in the Lévy Hierarchy. In the Lévy
Hierarchy, we usually consider normalized formulas, that is, formulas in the form
of Q0v0 . . . Qn−1vn−1ϕ, where (a) Q0, . . . , Qn−1 are alternating quantifiers, (b)
v0 . . . vn−1 are variables, and (c) ϕ is �0, or equivalently, ϕ has only bounded quan-
tifiers.

The Collection principle says that normalized formulas are closed under bounded
quantification. Without full collection, say in KP or KP−, such closure properties may
be lost. This problem is more related to Collection than to Foundation.

Definition 2.2 Wedefine the ∗-hierarchy of formulas here. Supposem ≤ n are natural
numbers.

�∗
0 = �∗

0 = �0 ¬�∗
n ⊆ �∗

n ¬�∗
n ⊆ �∗

n
�∗

n ∧ �∗
m ⊆ �∗

n �∗
n ∧ �∗

m ⊆ �∗
n �∗

n+1 ∧ �∗
m ⊆ �∗

n+1 �∗
n+1 ∧ �∗

m ⊆ �∗
n+1

(∃x ∈ y�∗
n ) ⊆ �∗

n (∃x ∈ y�∗
n) ⊆ �∗

n (∀x ∈ y�∗
n ) ⊆ �∗

n (∀x ∈ y�∗
n) ⊆ �∗

n
(∃x�∗

n ) ⊆ �∗
n (∃x�∗

n) ⊆ �∗
n+1 (∀x�∗

n ) ⊆ �∗
n+1 (∀x�∗

n) ⊆ �∗
n

A�∗
n (�

∗
n , resp.) formula is normalizable if it is equivalent to a�n (�n , resp.) formula.

KP− proves that �∗
1 formulas are normalizable. However, even assuming KP, there

may still be a �∗
2 formula that is not normalizable.

Proposition 2.3 (KP−) Suppose φ and ψ are normalized formulas. Then

(1) ¬φ, φ ∧ ψ and φ ∨ ψ are normalizable.
(2) If φ is �n (�n, resp.), then ∃x φ and ∃x ∈ y φ (∀x φ and ∀x ∈ y φ, resp.) are

normalizable.
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Proposition 2.4 KP− + �n-Collection � for any �m (�m, resp.) formula φ, m ≤ n,
∀x ∈ yφ (∃x ∈ yφ, resp.) is normalizable.

Proof For m = 0, it is straightforward. Now suppose n ≥ m > 0, and the statement
is true for m − 1. Also, suppose u is a new variable and φ is in the form of ∃vψ (∀vψ ,
resp.), where ψ is normalized �m−1 (�m−1, resp.). Then ∀x ∈ yφ ≡ ∀x ∈ y∃vψ ≡
∃u∀x ∈ y∃v ∈ uψ (∃x ∈ yφ ≡ ∃x ∈ y∀vψ ≡ ∀u∃x ∈ y∀v ∈ uψ , resp.), by
�n-Collection. Since ∃v ∈ uψ (∀v ∈ uψ , resp.) is�m−1 (�m−1, resp.) normalizable,
∀x ∈ yφ (∃x ∈ yφ, resp.) is normalizable. ��
Corollary 2.5 KP− +�n-Collection � all �∗

n and �∗
n formulas are normalizable. In

particular, assuming KP−, every �∗
1 or �∗

1 formula is respectively equivalent to a �1
or �1 formula.

3 Transfinite induction and the Schröder–Bernstein theorem

In this section, we move to the semantic aspects of fragments of KP. From now on,
we always assume M |� KP−. And if x ∈ M , then we say x is M-finite.

Definition 3.1 α ∈ M is an ordinal if α is transitive and linearly ordered by ∈. An
ordinal of the form α ∪ {α}, where α is an ordinal, is a successor. An ordinal λ is limit
if it is nonempty and not a successor. If α is zero or a successor and no β ∈ α is limit,
then α is finite.

Note that an ordinal in M must be M-finite but it may not be finite. We use OrdM

to denote the class of ordinals in M and use < to denote ∈ on the ordinals. With
�0-Foundation, it is possible to develop the basic properties of ordinals.

Proposition 3.2 (KP− + �0-Foundation)

(1) 0 = ∅ is an ordinal.
(2) If α is an ordinal, then β ∈ α is an ordinal and α + 1 = α ∪ {α} is an ordinal.
(3) < is a linear order on the ordinals.
(4) For every ordinal α, α = {β : β < α}.
(5) If C is a nonempty set of ordinals, then

⋂
C and

⋃
C are ordinals,

⋂
C =

inf C = μα(α ∈ C) and
⋃

C = supC = μα(∀β ∈ C(β ≤ α)).

Proof See Jech [9, Chapter 2] for the usual proofs. They go through in KP−, as the
reader can verify. ��
Lemma 3.3 If M |� Infinity, then M has a limit ordinal. If M |� �0-Foundation in
addition, then M has a least limit ordinal ωM.

Proof Suppose x ∈ M is a set witnessing the Infinity axiom. LetC = {α ∈ x : α is an
ordinal}. Then λ = supC is an ordinal by Proposition 3.2, so that for any β < λ, there
is an α ∈ x such that β ≤ α. Since α+2 = α∪{α}∪{α∪{α}} ∈ C , β+1 < α+2 ≤ λ.
Hence, λ is limit. ��
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904 S.-D. Friedman et al.

Theorem 3.4 (Transfinite Induction along theordinals) Suppose M |� �1-Foundation
and I : M → M is a �1 partial function. Then the partial function f : OrdM →
M, δ �→ I ( f � δ) is well defined and �1. Moreover, if for all ordinals δ and all
M-finite functions η : δ → M, we have η ∈ dom(I ), then f is total.

Proof f is �1 definable:

f (δ) = x ↔ ∃w (w is a function with domain δ ∪ {δ}
such that ∀δ′ ≤ δ [w(δ′) = I (w � δ′) ∧ w(δ) = x]).

Firstly, note that �1 definable set dom( f ) is downward closed and so by �1-
Foundation, it is either OrdM or an ordinal in M . Suppose δ ∈ OrdM and x, x ′ ∈ M
such that f (δ) = x �= x ′ = f (δ). Then we pick witnesses w for f (δ) = x and w′ for
f (δ) = w′. By comparing w and w′, we find the least δ′ ≤ δ such that w(δ′) �= w′(δ).
However, this contradicts the fact that w � δ′ = w′ � δ′. Hence, f is a function.

Now we suppose that dom( f ) is not OrdM but for all ordinals δ and all M-finite
functions η : δ → M , we have η ∈ dom(I ). Pick the least ordinal δ /∈ dom( f ). Then
∀δ′ < δ∃x ′( f (δ′) = x ′). By Proposition 2.1, graph( f ) exists. Thus, f (δ) is also
defined. This is a contradiction. ��

In most popular proofs of the Schröder–Bernstein theorem, for example, that in
Jech [9, Theorem 3.2], we obtain the required bijection by an induction on ω. Such
proofs normally go through in KP−+�1-Foundation+Infinity.Without the Axiom of
Infinity, the proof breaks down because ω, although still �0-definable, can no longer
be used to bound quantifiers. Therefore, although the Schröder–Bernstein theorem is
provable in KP− + �1-Foundation alone, apparently a separate argument is needed
when Infinity fails.

We reduce the ¬Infinity case to arithmetic, in which the situation is well-known.
The key to this reduction is a �1-definable bijection between the universe and the
ordinals, defined by ∈-induction. As observed in Kaye and Wong [10], this requires
the existence of transitive closures. Recall the transitive closure of a set x , denoted by
TC(x), is the smallest transitive set that includes x .

Lemma 3.5 KP− + �1-Foundation � ∀x ∃y TC(x) = y.

Proof Follow Lemma 5.3 and Proposition 5.4 in Kaye and Wong [10].

Theorem 3.6 (Transfinite ∈-induction) Let M |� KP− + �1-Foundation, and
I : M → M that is �1-definable. Then there exists a �1-definable f : M → M
satisfying f (x) = I ( f � x) for every x ∈ M.

Proof Similar to that of Theorem 3.4. Transitive closures are used to show that such
an f is total. ��

(The inverse of) the following bijection between the universe and the ordinals
originates from Ackermann [1].
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Theorem 3.7 Let M |� KP− + �1-Foundation + ¬Infinity. Then

f (x) =
∑

y∈x
2 f (y)

defines a bijection f : M → OrdM with a �1 graph.

Proof A standard application of ∈-induction shows the functionality and totality of f .
The failure of the Infinity Axiom contributes to the injectivity of f . If α ∈ OrdM , then
f (Ack(α)) = α, where

Ack(α) = {Ack(β) : ∃γ<α ∃δ<2β α = (2γ + 1)2β + δ},

defined by induction on the ordinals. ��
In a sense, this theorem shows that ¬Infinity is a strong assumption over KP− +

�1-Foundation, because it implies the Power Set Axiom, �1-Separation, the Axiom
of Choice, and V=L. The Schröder–Bernstein theorem also follows as promised.

Theorem 3.8 (KP−+�1-Foundation)Let A, B be sets. If there are injections A → B
and B → A, then there is a bijection A → B.

Proof We already mentioned that most standard proofs go through in KP− +
�1-Foundation + Infinity. So suppose M |� KP− + �1-Foundation + ¬Infinity,
and f : M → OrdM is the bijection given by Theorem 3.7. Take A, B ∈ M . Suppose
M contains injections A → B and B → A.

With�1-Foundation in M , we knowOrdM |� I�1 as a model of arithmetic. Via f ,
we may view A and B as (arithmetically) coded subsets of OrdM . Apply I�0 + exp
in OrdM to find α, β ∈ OrdM that are respectively bijective with A and B in M . The
hypotheses imply that there are injections α → β and β → α coded in OrdM . So by
the coded version of the Pigeonhole Principle, which is available in all models of I�0,
we conclude α = β. It follows that A is bijective with B. ��

4 The constructible universe

4.1 Basic properties

In this section, M always satisfies KP− + �1-Foundation. By a transfinite induction,
we may define LM along OrdM :

LM
0 = ∅,

LM
α+1 = LM

α ∪ DefM (LM
α ),

LM
λ = ⋃

α<λL
M
α where λ is limit.

Here, DefM (x) denotes the collection of all definable subsets of x in the sense of M .
Let LM = ⋃

α∈OrdM LM
α .
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906 S.-D. Friedman et al.

If Infinity holds, then we may define the function DefM as usual. If Infinity fails,
thenwe getDefM using the power set axiom and�1-Separation given byTheorem3.7.

Lemma 4.1 (KP− +�1-Foundation) The predicate “x |� φ[v/a]”, where x is a set,
φ is a formula (in the sense of the model) and a is a sequence of sets, is �1. We denote
this relation by Sat(�φ�, x, a).

Proof (Sketch) The predicate “x |� φ[v/a]” is true if and only if we have an M-finite
function s which assigns to each triple (�φ′�, x ′, a′) a truth value according to the usual
definition of truth, and s(�φ�, x, a) is assigned “true”. With this definition, we cannot
get conflicting truth assignments. This is proved by applying�0-Foundation to the s’s
above. Also, every triple gets a truth value, because if not, then by �1-Foundation,
there is a formula of minimum length such that this fails, which is not possible. ��
Theorem 4.2 (KP− + �1-Foundation) For every ordinal α, LM

α ∈ M. The function
α �→ LM

α is �1.

Proposition 4.3 (KP− + �1-Foundation) For every ordinal α, LM
α is transitive and

LM
α ∩ OrdM = α.

Theorem 4.4 If M |� KP− + �1-Foundation, then LM |� KP− + �1-Foundation.

Proof Weonly need to check�1-Foundation and�0-Collection. Pick any�1 formula
∀wφ(x, w), where φ ∈ �0. Suppose there is an x ∈ LM such that ∀w ∈ LMφ(x, w).
The set {y ∈ LM

α : ∀w ∈ LMφ(y, w)} is �1 for every ordinal α. By �1-Foundation
in M , it is either empty or has a ∈-least witness. Hence, LM satisfies �1-Foundation.

To check�0-Collection, we fix any�0-formulaψ(y, w)with parameters from LM

and x ∈ LM . Suppose ∀y ∈ x∃w ∈ LM ψ(y, w). Then we may check the L-rank of
the witnesses (i.e. the least α such that w ∈ LM

α ). Then ∀y ∈ x∃α∃w ∈ LM
α ψ(y, w).

By �1-Collection of M , there is a searching bound α∗ ∈ M such that ∀y ∈ x∃α <

α∗∃w ∈ LM
α ψ(y, w). Therefore, LM

α∗ is the searching bound for the witness w for all
y ∈ x . ��
Definition 4.5 (KP− + �1-Foundation) V = L stands for ∀x∃α(x ∈ Lα).

If M |� KP− + �1-Foundation, then LM |� V = L .

Lemma 4.6 Suppose M |� KP− + �1-Foundation + V=L. Then there exists a �1
bijection M → OrdM that preserves the relation ∈.
Corollary 4.7 Let M |� KP− + �1-Foundation + V=L. Then there exists a �1-
definable linear order <L on M such that M satisfies

• ∀s (∃x (x ∈ s) → ∃x (
x ∈ s ∧ ∀x ′<Lx (x ′ /∈ s)

))
;

• ∀x, y (x ∈ y → x <L y); and
• ∀α∈Ord ∀x∈Lα ∀v<Lx (v ∈ Lα).

Note that ωM may not be the standard ω. Nevertheless, the notion of �n formulas,
where n is a standard positive natural number, is absolute, in the sense that the formulas
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recognized in M as �n are all equivalent in M to some standard �n formulas. That is
because we have a universal �1 formula that is standard, so that in a nonstandard �n

formula, we may code its �0 matrix into a standard �1 formula, if n is odd; and we
may code it into a �1 formula, if n is even.

Lemma 4.8 (KP− + �1-Foundation + V=L) There are

(a) a universal �1 formula;
(b) a universal �1 function, i.e., a recursive enumeration of all �1 partial functions,

and
(c) a universal Turing functional, i.e., a recursive enumeration of all the codes for

oracle computations.

Proof Note that there is an effective enumeration of all �1 formulas (in the sense of
the model). The universal �1 formula is just the one searching for a witness for each
�1 formula. The relation that “a �1 formula ϕ is satisfied with a witness w” can be
formalized by Lemma 4.1 (cf. Sect. 3.1 in Barwise [2]). For a universal �1 function,
given an index, we enumerate ordered pairs (x, y) such that no (x, y′) has appeared
earlier. One can define a universal Turing functional similarly. ��

However, this is not the full picture of formulaswithinM .We can have a�n formula
for a nonstandard natural number n ∈ M . Also, we have limited collection. Thus, it
is possible that we have a �∗

n formula, where n ∈ ω is standard, that is not equivalent
to a �n formula.

4.2 Recursive Ordinals in models of KP−

Lemma 4.9 If M |� KP− + �1-Foundation + Infinity, and ωM = ω, then every
recursive ordinal is in M.

Proof For the sake of contradiction, consider the least recursive ordinal not in M and
suppose �k , k < ω codes a well ordering of ω isomorphic to this recursive ordinal.
Then �k together with its ordering is M-finite. Let <�k denote this ordering. Define
a �1 function f : ω → OrdM as follows:

f (n) = γ ↔
there is an order isomorphism between γ and {m < ω : m <�k n}.

If f is total, then the order type of �k is in M , leading to a contradiction. Otherwise,
suppose n is <�k -least such that n /∈ dom( f ). Since dom( f ) = {m < ω : m <�k n}
isM-finite,graph( f ) isM-finite. It follows that f is an isomorphismbetweendom( f )
and ran( f ), contradicting with n /∈ dom( f ). ��

We may generalize recursive ordinals as in the following.

Definition 4.10 (KP− +�1-Foundation+ Infinity) An ordinal α is recursive if there
is a �1 (in the language of arithmetic with parameters in ωM ) linear ordering of ωM

with respect to which ωM is order isomorphic to α.
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Remark 4.11 Suppose there is an ordinal that is nonrecursive; then there must be
a least one by �1-Foundation. We denote this ordinal by ω

CK,M
1 . In this case, it is

straightforward to check that LM
ω
CK,M
1

satisfies full foundation. Furthermore, LM
ω
CK,M
1

|�
�0-Collection, and so LM

ω
CK,M
1

|� KP. To see this, for the sake of contradiction, assume

�0-Collection fails. Then there is a �0(LM
ω
CK,M
1

) function f ∗ from ωM cofinally to

ω
CK,M
1 . For each ordinal δ in ω

CK,M
1 , we may pick up the least index eδ such that

�e codes a linear ordering and the order type of �eδ is δ (From here onwards in this
paragraph, each �e is taken as a code of a binary relation “<”, which may and may
not be a linear ordering). Thus, f ∗ induces a function f : n �→ e f ∗(n), for all n ∈ ωM .

This function is �1
1(M). Note that { f ∗(n) : n ∈ ωM } is cofinal in ω

CK,M
1 and so is

{order type of � f (n) : n ∈ ωM }. This implies that the set of Gödel numbers of well-
orderings WOG(M) = {e ∈ ωM : �e codes a well-ordering} = {e ∈ ωM : �e has
an order preserving map to � f (n), for some n} is �1

1(M). Here, the second definition
of WOG(M) is equivalent to the first because (1) if �e is well-ordered, then the order
type of �e is less than ω

CK,M
1 , and (2) {order type of � f (n) : n ∈ ωM } is cofinal

in ω
CK,M
1 . Kleene’s representation theorem [11] indicates that every �1

1(M) set is
many-one reducible to WOG(M). Thus, the above equalities concerning WOG(M)

imply that every �1
1(M) set is �1

1(M), deriving a contradiction.

Remark 4.12 If every ordinal in OrdM is recursive, then we write ω
CK,M
1 = OrdM .

There is a model M |� KP− + �1-Foundation in which full foundation fails and
ω
CK,K
1 = OrdK . To see this, let K be an ω-nonstandard elementary extension of

the standard L
ωCK
1
. Pick a nonstandard c ∈ ωK and a large enough n ∈ N such that

�n+1 ⊇ KP−+�1-Foundation+V=L
ωCK
1
. LetM be the substructure of K consisting

of the �n+1-definable elements over c. Then M is ω-nonstandard because c ∈ ωM .
Also M �n+1 K by Tarski–Vaught, and so M |� KP− +�1-Foundation+V=L

ωCK
1
.

However, the standard N is �n+3-definable in M , because it is the set of all b ∈ ωM

such that some element of M is not definable over c by a �n+1-formula with Gödel
number less than b. So M �|� �n+3-Foundation.

4.3 Collection, separation and foundation

Collection, Separation and Foundation are closely related to each other. An immediate
observation is that KP− +
-Separation+�0-Foundation, together with the existence
of transitive closures, implies 
-Foundation. A less obvious result is the following:

Lemma 4.13 (KP−) For every standard natural number n, �n-Collection �
�n-Separation.

Proof We prove this by induction on n. Suppose we have proved the conclusion
for n and �n+1-Collection holds. Assume ∃yφ(x, y) and ∃yψ(x, y) are formulas
such that (1) φ and ψ are �n , (2) ∀x ∈ z ∃y (φ(x, y) ∨ ψ(x, y)), and (3) ¬∃x ∈
z ∃y (φ(x, y)∧ψ(x, y)). Then�n+1-Collection implies that there is a b such that∀x ∈
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z ∃y ∈ b (φ(x, y)∨ψ(x, y)). By �n-Separation, z′ = {x ∈ z : ∃y ∈ b (φ(x, y))} and
z′′ = z \ z′ are sets. (Here, we need �∗

n = �n , which is implied by �n+1-Collection.)
This shows �n+1-Separation. ��

Over KP−, the following implications hold.

�1-Foundation �2-Foundation . . . . . .

�1-Foundation �2-Foundation �3-Foundation . . .

�1-Foundation �2-Foundation . . . . . .

Wewill use the L hierarchy to show the implications indicated by double arrows above
do not reverse.

Lemma 4.14 (Ramón Pino [21, Theorem 1.28]) Let n ∈ N. Then KP− + Infinity +
�n+1-Collection + �n+1-Foundation + V=L proves the following statement.

For every δ ∈ Ord, there exists a sequence (αi )i≤δ in which α0 = 0 and αi+1 =
min{α > αi : Lα �n L} for each i < δ.

Proof If n = 0, then the sequence we want is just (α)α≤δ . So suppose n > 0. With
�1-Induction onω, we have a�n-formula�n-Sat for the satisfaction of�n-formulas.
We can find arbitrarily high levels of the L-hierarchy which reflect this formula thanks
to �n+1-Collection and �n+1-Induction on ω. This implies there are arbitrarily large
Lα �n L. With �n+1-Collection and �n+1-Foundation, we can iterate this along any
ordinal. ��
Theorem 4.15 (Ressayre [21, Theorem 4.6]) KP− + Infinity + �n+1-Collection +
�n+1-Foundation + V=L � �n+1-Foundation for all n ∈ N.

Proof Start with a countable M |� KP− + Infinity + �n+1-Collection + �n+1-
Foundation+V=L in which ωM = ω but OrdM is not well-ordered. Take a
nonstandard δ ∈ OrdM . Let (αi )i≤δ+δ be a sequence of ordinals given by Lemma 4.14.
As δ is nonstandard, the reader can easily verify using a standard argument [6, Sec-
tion 3] that there are continuum-many initial segments ofOrdM between δ and δ + δ.
So at least one of them is not definable in M . Take any initial segment I ⊆ OrdM with
this property. We will prove that K = ⋃

i∈I LM
αi

is the model we want.

Claim 4.15.1 K �n M.

Proof of claim We show by induction on m ≤ n that K �m M . Clearly K �0 M
because K is a transitive substructure of M . Let m < n such that K �m M . Pick
any φ(x̄, z̄) ∈ �m and c̄ ∈ K . Assume K |� ∀x̄ φ(x̄, c̄). Find some i ∈ I such that
c̄ ∈ LM

αi
. Let x̄ ∈ LM

αi
be arbitrary. Then K |� φ(x̄, c̄). Since K �m M by the induction

hypothesis, and LM
αi

�n M , we know LM
αi

|� φ(x̄, c̄). Hence LM
αi

|� ∀x̄ φ(x̄, c̄). This
transfers up to M by n-elementarity, completing the induction.
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Claim 4.15.2 K |� �n+1-Collection.

Proof of claim Take a, c̄ ∈ K and φ(x, y, z̄) ∈ �n such that

K |� ∀x∈a ∃y φ(x, y, c̄).

Pick any j ∈ δ + δ above I . Let x ∈ a. Then K |� φ(x, y, c̄) for some y ∈ K .
Since K �n M and LM

α j
�n M , the same is true when the satisfaction of φ is evaluated

in LM
α j

instead. Therefore, by setting b = LM
α for some α < α j above I , we see that

LM
α j

|� ∃b ∀x∈a ∃y∈b φ(x, y, c̄).
Since the choice of j ∈ δ + δ above I was arbitrary, this underspills. Let i ∈ I

and b ∈ LM
αi

such that a, c̄ ∈ LM
αi

and LM
αi

|� ∀x∈a ∃y∈b φ(x, y, c̄). Notice since
LM

αi
�n M and K �n M , we have LM

αi
�n K . Therefore K |� ∀x∈a ∃y∈b φ(x, y, c̄)

too because LM
αi

is a transitive substructure of K .
This claim implies K |� �n+1-Separation + �n+1-Foundation.
Notice if n = 0, then we do not have�1-Foundation in K . Thus Corollary 4.7 does

not always apply to K . Nevertheless, the model M does satisfy �1-Foundation, and
so K can still get the conclusions of Corollary 4.7 from M .

Claim 4.15.3 K |� �n+1-Foundation.

Proof of claim Let θ(v, x) be a �n-formula that may contain undisplayed parameters
from K . Suppose

K |� ∃x ∃v θ(v, x) ∧ ∀x (∃v θ(v, x) → ∃x ′∈x ∃v θ(v, x ′)
)
.

Fix any x0 ∈ K such that K |� ∃v θ(v, x0). Let η(k, x) be the formula

(x)0 = x0

∧ ∀i∈k

⎛

⎜
⎜
⎜
⎜
⎝

(x)i+1 ∈ (x)i ∧ ∃α∈Ord ∃v∈Lα
⎛

⎜
⎝

(x)i ∈ Lα ∧ θ(v, (x)i+1)

∧ ∀v′<Lv ∀x ′∈(x)i ¬θ(v′, x ′)
∧ ∀x ′<L(x)i+1

(
x ′ ∈ (x)i → ¬θ(v, x ′)

)

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

,

which is �n+1 over M by Corollary 4.7 and Claim 4.15.2.
We show K |� ∀k∈ω ∃x η(k, x) by an external induction on k. Suppose we already

have x0, x1, . . . , xk ∈ K satisfying the inductive conditions. Take any large enough
α ∈ OrdK such that xk ∈ LK

α and K |� ∃x∈xk ∃v∈Lα θ(v, x). Then we can set

vk+1 = min<L{v ∈ LK
α : K |� ∃x∈xk θ(v, x)}, and

xk+1 = min<L{x ∈ xk : K |� θ(vk+1, x)}.

These minima exist by �n+1-Foundation.
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Apply �n+1-Collection to get s ∈ K such that K |� ∀k∈ω ∃x∈s η(k, x). Define
f (k) = y to be

∃x∈s (
η(k, x) ∧ (x)k = y

)
,

which is �n+1 over M by �n+1-Collection. It is not hard to verify that K |�
∀k∈ω ∃!y f (k) = y. So the set

{y ∈ TC(x0) : K |� ∃k∈ω f (k) = y}

is�n+1-definable but has no ∈-minimum element. This contradicts�n+1-Foundation
in K .

Notice that K |� V=L because the L-hierarchies inM and K , being�1-definable,
coincide.

Claim 4.15.4 K �|� �n+1-Foundation.

Proof of claim If n = 0, then K contains δ but not δ + δ, so that �1-Foundation fails
in K . Suppose n > 0. Then δ+δ ∈ K by�1-Foundation, but there can be no sequence
(βi )i≤δ+δ in which β0 = 0 and βi+1 = min{β > βi : Lβ �n L} for each i < δ + δ,
because K �n M . So Lemma 4.14 tells us K cannot satisfy �n+1-Foundation. ��

In particular, this theorem says that if n ∈ N, then KP− + �n+1-Foundation �

�n+1-Foundation. We do not see how to show this without invoking the much
stronger �n+1-Collection. The use of the Infinity Axiom is necessary, because
KP− +�n+1-Foundation+¬Infinity � �n+1-Foundation, as is classically known in
the context of arithmetic [17]. The use of V=L, however, is only superficial: we may
as well work with LM if M |� V �=L in the proof above. Also, we may repeat the
proof of Theorem 4.15 with V = L replaced by V = L[R] for some real R.

Compare the next theorem with Proposition 3.2 in Rathjen [19].

Theorem 4.16 KP− + �n+1-Collection + �n+1-Foundation + V=L � �n+1-
Foundation for all n ∈ N.

Proof If Infinity holds, then the proof is the same as that of Claim 4.15.2, except that
now, we can use �n+1-Foundation to show ∀k∈ω ∃x η(k, x). If Infinity fails, then
apply the equivalence between I�n+1 and I�n+1 in arithmetic [17] via the bijection
given by Theorem 3.7. ��
Question 4.17 Let n ∈ N. Does KP−, Infinity, �n+1-Collection, plus �n+1-
Foundation prove �n+1-Foundation?

4.4 Level 1-KPL

Definition 4.18 Level 1-KPL denotes KP− + �1-Foundation + V=L.

Notice Theorem 4.16 above implies Level 1-KPL � �1-Foundation.
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Definition 4.19 (Level 1-K PL) Let I be a bounded initial segment of ordinals. We
say that I is a cut, if there is no least ordinal β /∈ I .

Note in the above definition, though I is transitive and linearly ordered by ∈, I is not
an ordinal, as otherwise, I would become the least ordinal not in I .

Lemma 4.20 (Level 1-KPL) For all n ≥ 1, �n-Foundation holds if and only if there
is no �n cut. The same is true for �n-Foundation and �n cuts if �n-Collection is
additionally assumed.

Proof If there is a �n cut, then �n-Foundation fails, clearly. Conversely, suppose
�n-Induction fails. That is, there is a�n formula φ(x) such that ∀x[(∀y ∈ xφ(y)) →
φ(x)] but for some x0, ¬φ(x0) holds. Let f : OrdM → M be the recursive bijection
in Lemma 4.6. Then we check that ∀α ∈ OrdM [(∀β < αφ( f (β))) → φ( f (α))], as
f preserves ∈ of M . Now we define I = {α ∈ OrdM : ∀β < αφ( f (β))}. Then I is
bounded �n and there is no least ordinal not in I . Thus, I is a �n cut. ��
Lemma 4.21 (Level 1-KPL) Every M-finite set x has a cardinality |x |.
Lemma 4.22 (Level 1-KPL). If δ is an infinite cardinal, then there is an order pre-
serving bijection from δ into δ2, where (a, b) ≺ (c, d) if and only if max(a, b) <

max(c, d) ∨ (max(a, b) = max(c, d) ∧ a < c) ∨ (max(a, b) = max(c, d) ∧ a =
c ∧ b < d).

Proof For the sake of contradiction, we assume that δ is the least cardinal that fails to
have this property. We define the function by �1 induction along the ordinals. Note
that the maximum of the two coordinates of the image of α is no more than α for any
α < δ. Thus, the domain of the function has to be greater than δ. Let the image of
δ be (a, b), where max(a, b) < δ. Considering the order preserving bijection from
|max(a, b)|2 and |max(a, b)|, we can get a surjection from |max(a, b)| onto δ. That
is a contradiction. ��
Corollary 4.23 (Level 1-KPL). Suppose δ is an infinite cardinal. Then |δ2| = δ. Thus,
for x and y satisfying |x |, |y| ≤ δ, the Cartesian product x × y and the set x<ω of
finite sequences of x are both of cardinality at most δ. Thus, for every infinite ordinal
α, |Lα| ≤ |α|.
Proof Let |x | ≤ δ. Consider the sequence {xn}n<ω. Now, by �1-Induction, |xn| ≤ δ

for all n < ω. Thus, |x<ω| ≤ |δ × ω| ≤ δ.
For the sake of contradiction, assume that α is the least infinite ordinal such that

there is no injection from Lα into α. If α is a successor ordinal with predecessor α′,
then |Lα| ≤ |Lα′<ω ×ω| ≤ |α′ ×ω| ≤ |α′|, which contradicts our assumption. Thus,
α is a limit ordinal. Since for any infinite β < α, |Lβ | ≤ |β| ≤ |α|, there is a �1
injection from Lα to α × α. Thus, |Lα| ≤ |α|, which again is a contradiction. ��

5 The Friedberg–Muchnik theorem

In this section we will show the Friedberg–Muchnik Theorem in Level 1-KPL. Again
M is a model of Level 1-KPL. The Sack–Simpson construction [22] in α-recursion
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theory uses the�2-cofinality (of the ordinals), i.e., the least ordinal that can bemapped
to a cofinal set of ordinals by a �2 function, the existence of which apparently needs
much more foundation than Level 1-KPL can afford.

Question 5.1 Is there a model of Level 1-KPL with no �n cofinality for some n ≥ 2?

Lemma 5.2 (Level 1-KPL) If there is a�1 injection from the universe into an ordinal,
then there is the least such an ordinal. It is called the �1 projectum, denoted by
σ1p(M), or σ1p for short.

Proof Suppose α ∈ M is an ordinal such that there is a�1 injection from the universe
into α. We claim |α| = σ1p. Clearly, there is a �1 injection from the universe into
|α|. Conversely, if we have a �1 injection p from M into β ≤ |α|, then p � |α| is
M-finite and is an injection into β. As |α| is a cardinal in M , β = α. ��
Similarly, we may define the�2 projectum of M , σ2p(M), to be the least ordinal such
that there is a �2 injection from the universe into it. However, it is not known whether
such a projectum exists.

Question 5.3 Is there a model of Level 1-KPL with no �2 projectum?

Corollary 5.4 (Level 1-KPL) If σ1p(M) exists, then σ1p(M) is the largest cardinal
in M.

Proof Suppose σ1p(M) exists and α is any ordinal in M greater than σ1p(M). It is
sufficient to show that |α| = σ1p(M). The proof of Lemma 5.2 tells us that σ1p(M)

is a cardinal. Moreover, since there is a �1 injection from OrdM into σ1p(M), there
is such an injection from OrdM into α. Therefore, α satisfies the assumptions in the
proof of Lemma 5.2. Hence, |α = σ1p(M). ��
Lemma 5.5 (Level 1-KPL) Given an r.e. set A, we have a recursive enumeration of
A without repetition. I.e. there is a recursive one-one function f such that dom( f ) is
OrdM or an ordinal in M, and ran( f ) = A.

Proof Suppose at each stage s, only ordinals less than s are enumerated into A. That
is, by any stage, only M-finitely many ordinals are enumerated into A. Then we define
f by transfinite induction:

f (δ) = λ if and only if there is a stage ssuch that

(1) all ordinals enumerated before stage sare included in f � δ, and

(2)λ is the least ordinal enumerated at stage s but not in f � δ.

It is straightforward to check that f is the function we want. ��
Corollary 5.6 (Level 1-KPL) If σ1p(M) exists, then every �1 subset of an ordinal
less than σ1p(M) is M-finite. If σ1p(M) does not exist, then every�1 bounded subset
of OrdM is M-finite.
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Proof Let A be any �1 subset as in the statement of Corollary 5.6. By Lemma 5.5,
there is a recursive one-one function f such that dom( f ) isOrdM or an ordinal in M ,
and ran( f ) is A. To show that A is M-finite, it is sufficient to prove that dom( f ) is
an ordinal. Now we suppose dom( f ) is OrdM , for the sake of contradiction.

Case 1. σ1p(M) exists. Then f is an injection from OrdM to an ordinal less than
σ1p(M).

Case 2. σ1p(M) does not exist. Then f is an injection fromOrdM to an ordinal in
M .

In both cases, we get a contradiction. ��
Definition 5.7 (Level 1-K PL) Suppose δ is an ordinal. We say δ is (�1) stable if Lδ

is a �1 elementary substructure of the whole model.

Lemma 5.8 (Level 1-KPL) For every γ such that ω ≤ γ < σ1p, there is a stable
ordinal δ ≥ γ with the same cardinality as γ .

Proof Let γ be an ordinal such that ω < γ < σ1p and x be the set of all finite
sequences of Lγ . Suppose f : M → OrdM is the bijection from Lemma 4.6 and {ϕe}
is a universal enumeration of all �1 formulas as in Lemma 4.8.

Consider the set y = {(e, a) : e ∈ ω, a ∈ x, the number of free variables in ϕe is
equal to the dimension of a plus one}. Note that |y| ≤ |ω × |x || ≤ γ < σ1p. Thus,
any �1 subset of y is M-finite.

Now we define a (partial) map g : y → M such that (e, a) �→ the least v (in the
order of f ) such that ϕe(v, a) holds. As dom(g) is M-finite, so is ran(g).

Let G = ran(g). Then |G| ≤ |y| ≤ |γ |. Note that Lγ ⊂ G. (Then x, y ⊂ G).
Thus, |G| = |γ |. Suppose ϕ is a �1 formula (in the sense of M), and a is a finite
sequence in G such that the number of free variables in ϕ is equal to the dimension
of a plus one and M |� ∃vϕ(v, a). We claim that G |� ∃vϕ(v, a). To see this, let φ

be an M-finite sequence of �1 formulas with parameters from Lγ . Then M , and thus
G, is a model of ∃v∃a[ϕ(v, a) and each coordinate of a satisfies the corresponding
coordinate in φ]. This yields that G ≺1 M .

Now we define the Mostowski collapse c of G as follows:

c(v) = z ↔ ∃η(η is a function such that

∀v ∈ dom(η)(η(v) = {η(v′) : v′ ∈ v ∩ G}) and η(v) = z)

Note that c is �1 definable and dom(c) = G by �1-Foundation. Let G ′ = ran(c),
which is M-finite.

For every v, v′ ∈ G, v ∈ v′ ↔ c(v) ∈ c(v′) by �1-Foundation. Also, if M |� v �=
v′, then M |� v�v′ �= ∅ and soG ′ |� c(v) �= c(v′). Hence c is an isomorphism. Thus,
for every ordinal in G, its image in G ′ is still an ordinal. Thus, G ′ ⊂ ⋃

α∈OrdG
′ Lα .

Conversely, G ′ ⊃ ⋃
α∈G ′ Lα , since G ′ is transitive and G |� ∀ ordinal α, Lα exists.

Let δ be the least ordinal not in G ′. Then G ′ = Lδ .
Consider the function g. Note that for every (e, a) ∈ dom(g), c((e, a)) = (e, a),

and g(e, a) is the least witness for ϕe(v, a). Thus, the same is still true in G ′. For this
reason, G ′ = G. ��
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5.1 Construction

Now we are ready to construct r.e. subsets A and B of the ordinals such that A �T B
and B �T A as claimed in the Friedberg–Muchnik Theorem. Here A �T B means A
is not setwise reducible to B, i.e., there is no r.e. set� such that for any M-finite set F ,

F ⊆ A ⇔ ∃P ⊆ B∃N ⊆ B(〈F, 1, P, N 〉 ∈ �)

F ⊆ A ⇔ ∃P ⊆ B∃N ⊆ B(〈F, 0, P, N 〉 ∈ �),

where P, N are M-finite. Our construction will yield sets A, B that are not pointwise
reducible to each other. Here we say A is pointwise reducible to B if there is an r.e. set
� such that for any x ∈ M ,

x ∈ A ⇔ ∃P ⊆ B∃N ⊆ B(〈x, 1, P, N 〉 ∈ �)

x /∈ A ⇔ ∃P ⊆ B∃N ⊆ B(〈x, 0, P, N 〉 ∈ �).

It turns out that the construction we give in this subsection works well only in the
case when there is no maximum cardinal or when σ1p exists in the model; see The-
orem 5.12 below. Later in Sect. 5.3, we will present a slightly modified construction
which will deal with the other case.

Let p : OrdM → σ1p be a�1 injection. (Ifσ1p does not exist, then p is an arbitrary
�1 one-one function from OrdM to OrdM , e.g. p could be the identity function.) Let
{�ε : ε ∈ OrdM } be a uniform sequence of all �1 Turing functionals (for pointwise
reducibility). Requirements are either �A

ε �= B or �B
ε �= A for some ordinal ε. Let

{Rε : ε ∈ OrdM } be a �1 enumeration of all requirements. We say Rε has higher
priority than Rε′ if p(ε) < p(ε′). At any stage γ ,

• Rε requires attention if ε < γ , Rε was not satisfied prior to stage γ , and for the
corresponding witness, Turing machine, and the oracle known so far, the outcome
of the computation on this witness is 0 and this witness is not in the scope of any
restrictions of any requirement seen by stage γ to be of higher priority;

• Rε receives attention if
(1) it requires attention;
(2) we enumerate the witness into the corresponding set; and
(3) we put restrictions on the usage of the computation;

• Rε is initialized if we erase the memories of all activities of Rε by stage γ and
assign a new witness for it;

• Rε is satisfied if it received attention at some previous stage, and after that until
the present stage, it has not been initialized.

Supposewe are at stage γ ∈ OrdM . Consider {Rε : ε < γ }. If there is a requirement
requiring attention, then we satisfy the one with the highest priority seen at the current
stage, say Rε0 and initialize all requirements in {Rε : ε < γ } of lower priorities. If
no requirement requires attention, then we initialize all Rε (together with the lower-
priority requirements) with ε < γ such that a new element of the range of p less than
p(ε) is enumerated exactly at this stage. Then one by one, for each requirement in
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{Rε : ε < γ } that has not been satisfied nor assigned a witness not in the scope of
restrictions by higher priority requirements seen by stage γ , we assign a new witness
for it. We do not need to assign a new witness for Rε if either Rε has been satisfied
by stage γ or Rε has a witness not in the scope of restrictions by higher priority
requirements seen by stage γ .

Here is the method to assign new witnesses: We take the collection of all require-
ments in {Rε : ε < γ } that require witnesses. Suppose they are {Rεi : i < γ ′} such
that ∀i ′ < i < γ ′(εi ′ < εi ). We assign witnesses by induction on i . Assume that each
Rεi ′ , i

′ < i has gained a witness. Then we take w as the witness of Rεi if and only
if w is the least ordinal such that w has not been a witness so far and it is not in the
scope of restrictions by higher priority requirements seen at the current stage.

5.2 Verification

Lemma 5.9 (Level 1-KPL) Successor infinite cardinals are regular.

Proof Suppose δ is a successor cardinal, its predecessor cardinal is δ− and {αi : i < β}
is an M-finite sequence of ordinals such that αi , β < δ. Then there is a �1, thus M-
finite, bijection from {(x, i) : x ∈ αi , i < β} into (δ−)2. Thus, |⋃{αi : i < β}| ≤ δ−.

��
Lemma 5.10 (Level 1-KPL + Infinity) Suppose

(1) δ is a regular cardinal in M,
(2) α is an ordinal less than δ, and
(3) {Xi : i < α} is a uniform r.e. sequence of M-finite sets of ordinals with cardinality

less than δ. That is, the set {〈i, β〉 : i < α, β ∈ Xi } is r.e., and for every i < α,
Xi is an M-finite subset of OrdM, and for every i < α, |Xi | < δ.

Then
⋃

i<α Xi is M-finite and |⋃i<α Xi | < δ.

Proof The idea here originated from Sacks and Simpson’s paper [22].
Without loss of generality, we assume that the Xi ’s are mutually disjoint. Because

{〈i, β〉 : i < α, β ∈ Xi } is r.e., so is⋃
i<α Xi . By Lemma 5.5, there is a recursive one-

one function f such that dom( f ) is either OrdM or an ordinal in M , and ran( f ) =
{〈i, β〉 : i < α, β ∈ Xi }. To show the conclusion in Lemma 5.10 via a contradiction,
we assume that dom( f ) is eitherOrdM or an ordinal not less than δ. Then ran( f � δ)

is M-finite. Let ϕ(i, β,w) be a �0 formula such that

∀i < α∀β(β ∈ Xi ↔ ∃w ϕ(i, β,w)).

Then

∀β ∈ ran( f � δ)∃w ∃i < α ϕ(i, β,w).

�1-Collection shows that

∃w∗∀β ∈ ran( f � δ)∃w ∈ w∗∃i < α ϕ(i, β,w).
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Fix any i < α. Note

Xi ∩ ran( f � δ) = {β ∈ ran( f � δ) : ∃w ∈ w∗ϕ(i, β,w)}

is M-finite. Thus f −1(Xi ∩ ran( f � δ)) = f −1(Xi ) ∩ δ is also M-finite. Moreover,

| f −1(Xi ) ∩ δ| = | f −1(Xi ∩ ran( f � δ))| = |Xi ∩ ran( f � δ)| ≤ |Xi | < δ.

Since δ is regular, sup( f −1(Xi ) ∩ δ) < δ. Note that

⋃
i<α( f −1(Xi ) ∩ δ) = (

⋃
i<α f −1(Xi )) ∩ δ = δ.

Hence, {sup( f −1(Xi ) ∩ δ) : i < α} is cofinal in δ, contradicting the regularity of δ. ��

Lemma 5.11 (Level 1-KPL) If there is no maximum cardinal, then the cardinals are
cofinal in OrdM.

Proof ByLemma 5.4, σ1p does not exist. Thus, Lemma 5.6 yields that every bounded
r.e. set of ordinals is M-finite. For the sake of contradiction, suppose all cardinals are
bounded by γ . Then the set {α < γ : α is not a cardinal} is a bounded r.e. set and so
is M-finite. Thus, C = {α < γ : α is a cardinal} is M-finite as well. Let δ be the least
ordinal not in C . Then δ /∈ C , but it is a cardinal. ��

Theorem 5.12 (Level 1-KPL) If there is no maximum cardinal or σ1p is in the model,
then all requirements in the construction are satisfied.

Proof If at some stage Rε is satisfied and never initialized afterwards, then we are
done. Otherwise, let γ be a stage at which all elements in ran(p) � p(ε) have been
enumerated. Note that if there is no maximum cardinal, then σ1p does not exist and
p is an arbitrary �1 function from OrdM to OrdM .

Let {S j } be the enumeration of the requirements with higher priorities than Rε and
Rε itself with priority ordering. Then this sequence is M-finite and of length less than
a regular cardinal δ in the model. Now let I j = {α ≤ order type of stages at which
S j is initialized or assigned a new witness}. Then the sequence {I j } is uniformly
enumerable. We claim that each I j is M-finite and less than δ. Otherwise, let j be the
least such that I j ⊇ δ. By Lemma 5.10,

⋃
j ′< j I j ′ is M-finite and less than δ. Let ξ

be the least stage such that
⋃

j ′< j I j ′ has been enumerated completely. Then by stage
ξ , I j cannot be more than the order type of 1 + 2 × ⋃

j ′< j I j ′ . After stage ξ , I j is
initialized atmost once. Thus, I j is nomore than the order type of 1+2×⋃

j ′< j I j ′ +3,
not containing δ as a subset.

Thus, after some stage γ ′, Rε is never initialized nor assigned a new witnesses. If
Rε requires attention, then it would be the one with highest priority and is satisfied
and never injured afterwards. Otherwise, the witness would show that Rε is satisfied
automatically. ��
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5.3 Modified construction and its verification

Now we consider the case that σ1p is not in the model and there is the maximal
cardinal. We denote the maximum cardinal by ℵ.

The set {δ > ℵ : δ is not stable} is an r.e. set, and so, by Corollary 5.6, it is regular.
Recall that a collection of ordinals in M is regular, if its intersection with any ordinal
in M is M-finite. At each stage s, we say that δ is stable at stage s if ℵ < δ < ℵ+1+s
and according to the information up to ℵ+1+ s, we think that δ is stable. Then δ > ℵ
is stable if and only if there is a stage s such that for all stages t ≥ s, δ is stable at
stage t . In fact, by Corollary 5.6 and �1-Collection, for any α > ℵ, there is a stage
s such that after stage s, our justification of the stability of any ordinal in (ℵ, α] will
never change.

At stage s, let δs1 < δs2 < · · · < δsi < · · · be an enumeration of all stable-at-stage-s
ordinals greater than ℵ. Let δs0 = 0. [δsi , δsi+1) is called block i at stage s. Then for
every ordinal α, there is a stage s such that after stage s, all blocks below α will not
be changed. For every block i at stage s, let hsi be the least (in the order of L) M-finite
injection from block i at stage s into ℵ. If δs1 < · · · < δsi+1 are not changed from stage
s onwards, then so are block i and hsi .

We do the construction of A and B as in Sect. 5.1 with the following priority order:
Rε has higher priority than Rε′ if there are a stage s and blocks i ≤ j which are

not changed from stage s onwards, such that

(1) ε is in block i and ε′ is in block j , and
(2) either i < j , or i = j and hsi (ε) < hsi (ε

′).
This priority order is not recursive. Yet, for every ordinal α, the priority order on the
set {Rε : ε < α} can be recursively approximated and from some stage onwards,
the approximation gives a correct order on {Rε : ε < α}. At each stage, we do the
construction via the approximation of the priority order.

Other parts of the construction are parallel to that in Sect. 5.1. The rest of this section
will give a detailed description. Readers familiar with this can skip to the verification,
i.e., Lemma 5.13.

At stage s, we say that

• Rε requires attention if
(1) the least stable ordinal δ at stage s such that ε < δ < s exists;
(2) there is a stage t < s such that {α ≤ δ : α is stable at stage t} = {α ≤ δ : α

is stable at stage s}; and
(3) Rε was not satisfied prior to stage s and for the corresponding witness, Turing

machine, and the oracle known so far, the outcome of the computation on
this witness is 0 and that witness is not in the scope of any restrictions of
higher-priority (according to our knowledge at stage s) requirements;

• Rε receives attention if
(1) it requires attention;
(2) we enumerate the witness into the corresponding set; and
(2) we put restrictions on the usage of the computation;

• Rε is initialized if we erase the memories of all activities of Rε by stage s and
assign a new witness for it;
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• Rε is satisfied if it received attention at some previous stage, and after that until
the present stage, it has not been initialized.

Suppose we are at stage s ∈ OrdM . Consider {Rε : ε < s}. If there is a requirement
requiring attention, then we satisfy the one with the highest priority, say Rε and
initialize all requirements in {Rε : ε < s} of lower priorities. If no requirement requires
attention, then we initialize all Rε (together with the lower-priority requirements) with
ε < s, such that its block has been changed at this stage or its map into ℵ is changed
at this stage, i.e. no t, δ < s satisfy

(i) ε < δ < t ;
(ii) δ is stable at stage s (and so stable at stage t);
(iii) {α ≤ δ : α is stable at stage t} = {α ≤ δ : α is stable at stage s}; and
(iv) if ε is in block i at stage t , then for every t ′ ∈ [t, s], ht ′i = hti .

Lastly, one by one, for each requirement in {Rε : ε < s} that has not been satisfied
nor assigned a witness not in the scope of restrictions by higher priority requirements
seen at current stage, we assign a new witness for it.

The following lemma implies that every requirement is satisfied eventually. The
difficulty is to show that for every requirement, requirements of higher priority only
M-finitely many times take “actions”, including receiving attention, being initialized
and being assigned with new witnesses. If the requirements of higher priority stop
actions from some stage onwards, then the requirement being considered will have a
chance to be satisfied eventually. Lemma 5.13 below overcomes the difficulty using
stable ordinals: each requirement stops actions before the second next stable ordinal.

Lemma 5.13 (Level 1-KPL)Fix an i such that δ j = lims δsj exists for every j ≤ i+2.
We denote lims δsj by δ j , j ≤ i + 2. Let Iε = {s : Rε receives attention, is assigned a
new witness, or is initialized at stage s}. If ε ∈ [δi , δi+1), then Iε ∈ Lδi+2 .

Proof The stability of δi+1 implies {δ ≤ δsi+1 : δ is stable at stage s} = {δ j : j ≤ i+1}
for all s > δi+1. To show Lemma 5.13, it suffices to show that for every j ≤ i , if the
requirement Rε j is in block j , then Iε j ∈ Lδ j+2 . Suppose not. Let j be least which
witnesses this, and s0 > δ j+1 be least such that hs0 = h j is found. Then s0 < δ j+2.

By the definition of hsj , from stage s0 onwards, all requirements in blocks < j
will not receive attention nor be initialized. For every Rε in block j , we con-
sider the set I ′ε = {α : the order type of Iε \ s0 is no less than α}. Let δ ≤ ℵ
be any infinite regular cardinal. If for every Rε in block j such that the priority
order of Rε , restricted to block j , is less than δ, we can get I ′ε < δ, then we are
done. Otherwise, let Rε be the one with the highest priority in block j such that
I ′ε ≥ δ. Then U = ⋃{Iε′ \ s0 : Rε′ is in block j and has higher priority than Rε}
is a union of fewer than δ many M-finite sets, each of cardinality less than δ.
By Lemma 5.10, U is M-finite with cardinality less than δ. Thus, η = sup{I ′

ε′ :
Rε′ is in block j and Rε′ has higher priority than Rε} < δ, and so I ′ε ≤ 3×η+2 < δ.
That is a contradiction.

123



920 S.-D. Friedman et al.

6 The splitting theorem and the blocking method

In this section, we prove the Sacks Splitting theorem in the setting of Level 1-KPL.
We fix a regular nonrecursive r.e. set X and we will split X into two r.e. sets A and B
such that

(1) A ∪ B = X ,
(2) A ∩ B = ∅,
(3) X �T A, and
(4) X �T B.

To satisfy (1) and (2), we enumerate the elements in X one by one and put them into
either A or B but not both. For (3) and (4), we deal with the requirements

Pe : �A
e �= X

Qe : �B
e �= X

for all e ∈ OrdM .
For a single requirement, we apply the classical method of preserving computation.

To settle all requirements, we adopt the blocking method as in α-recursion theory. The
problem is that, within Level 1-KPL, we may not have the �2 cofinality of theOrdM .
Thus, here we use a modified version that came from arithmetic [15]. It is a modified
version of that in α-recursion theory. Here, a block is determined by its previous
actions: we only stop enlarging a block when the actions of all its previous blocks
terminate. The next lemma says that each block either grows to infinity or reaches to
a limit at some M-finite stage.

Lemma 6.1 For any nondecreasing recursive sequence {ξs}s , either it is cofinal in
OrdM (we denote this by lims ξs = ∞) or there is a stage s such that for all t > s,
ξt = ξs .

Proof Suppose {ξs}s is bounded inOrdM . Let δ be the least ordinal such that for all s,
ξs ≤ δ. We note that ∀δ′ < δ∃s(ξs > δ′). Then �1-Collection tells us there is a stage
s0 such that ∀δ′ < δ∃s < s0(ξs > δ′). Thus, ξs0 = δ and we are done.

6.1 Construction

Now we construct A and B stage by stage. We may pick an enumeration of X such
that at each stage s, there is at most one element enumerated into X and that element
(if any) is less than s. The set of elements enumerated into X before stage s is denoted
by X<s . Similarly, we use A<s , B<s , etc.

We say a requirement is a P-requirement (a Q-requirement, resp.) or of P-type
(Q-type, resp.), if it is of the form �A

e �= X (�B
e �= X , resp.). One essential principle

in the blocking method is that there is only one type of requirements in any block.
Block α at stage s is [0, h(α, s)), where h(α, s) =

• 1, if α = 0; (In the rest of the definition of h, we do not consider the case α = 0.)
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• α + 1, if s = 0;
• some value δ to be specified in the construction such that δ ≥ h(α, t) for all t < s
and δ > h(β, s) for all β < α, if α, s > 0.

We say α is even if α = γ + 2n for some limit ordinal γ and some finite ordinal
n. Otherwise, α is odd. We always assign P-requirements to even blocks and Q-
requirements to odd blocks. More precisely, for instance, suppose α is even and stable
up to stage s, i.e., there is t < s such that for all stages t ′ ∈ [t, s) and all β ≤ α,
h(β, t ′) = h(β, t). Then let the αth requirement at stage s, which we denote by Rs

α ,
be

∧{Pλ : λ is in Block α at stage s}. For ordinals in odd blocks, Q-requirements are
assigned similarly.

Also, we define themaximum common length of Rs
α , denoted bym(α, s), as follows:

If there is a stage t < s such that h(α, t) ≥ s, then letm(α, s) = 0. Otherwise, suppose
α is even and e is in Block α up to stage s.2 Then

m(e, s) = sup{l < s : �A<s
e � l = X<s � l}.

Correspondingly, the reservation of Rs
e , denoted by r(e, s), is the least ordinal r ≤ s

such that, �
A<s�r
e � m(e, s) = X<s � m(e, s). Similarly, define m(e, s) and r(e, s)

using B instead of A when e is in an odd block up to stage s. For every block α, let
r(α, s) = sup{r(e, s) : e is in Block α up to stage s}, and m(α, s) = sup{m(e, s) : e
is in Block α up to stage s}.

At stage s > 0, let Rs
α, m(α, s), r(α, s) be defined as above. If no element is

enumerated into X , then let As = A<s , Bs = B<s and h(α, s) = max{supt<s h(α,
t), supβ<α(h(β, s) + 1)} for all α, s.

Now suppose x is enumerated into X at stage s. Let α ≤ s be the least such
that x < r(α, s). If no such α exists, then enumerate x into A and h(α, s) =
max{supt<s h(α, t), supβ<α(h(β, s) + 1)} for all α, s. Otherwise, if the requirements
in Block α are of P-type, then enumerate x into B; if the requirements in Block α are
of Q-type, then enumerate x into A. Let

h(β, s) =
{
max{supt<s h(β, t), supγ<β(h(γ, s) + 1)}, if β ≤ α;
max{supt<s h(β, t), supγ<β(h(γ, s) + 1)} + s, if β ≥ α + 1.

That is, we keep blocks up to Block α, enlarge the next block by s and move the
remaining markers accordingly.

6.2 Verification

By �1-Foundation, h(α, s) is defined for every s and α. And by the definition of h,
for every fixed α, h(α, s) is nondecreasing with respect to s; for every fixed s, h(α, s)
is strictly increasing with respect to α.

2 In the context from here onwards, sup F is always the least ordinal greater or equal to every element in
F , for any M-finite set F of ordinals.
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In the construction, we have seen that if
(∗) There is an x enumerated into X at exactly stage s, and there is an α ≤ s such that
β ≥ α + 1 and x < r(α, s),
then h(β, s) > supt<s h(β, t). The following lemma states that the converse is also
true.

Lemma 6.2 If h(β, s) > supt<s h(β, t), then (∗) holds.
Proof Suppose (∗) fails. For the sake of contradiction, assume that β is the least such
that h(β, s) > supt<s h(β, t). Then supγ<β(h(γ, s) + 1) > supt<s h(β, t). Thus, for
some γ0 < β, h(γ0, s) ≥ supt<s h(β, t). But h(γ0, s) = supt<s h(γ0, t). Therefore,
supt<s h(γ0, t) ≥ supt<s h(β, t). Since for all t < s, h(γ0, t) < h(γ, t), we have (1)
s is limit; (2) supt<s h(γ0, t) = supt<s h(β, t); and (3) β = γ0 + 1.

Then h(β, s) = max{supt<s h(β, t), h(γ0, s)} = max{supt<s h(β, t), supt<s
h(γ0, t)} = supt<s h(β, t). That is a contradiction. ��

Now we define I = {α : ∃t∀s > t (h(α, s) = h(α, t))}. We claim that I is
downward closed. To see that, we suppose there are ordinals β < γ such that γ ∈ I
but β /∈ I . Let t0 be a stage such that ∀s > t0(h(γ, s) = h(γ, t0)). Since β /∈ I ,
there is a stage s > t0 such that h(β, s) > supt<s h(β, t). Then by Lemma 6.2, (∗)
holds. Because γ > β, (∗) also holds if we substitute β by γ in (∗). Then h(γ, s) >

supt<s h(γ, t), deriving a contradiction. Therefore, I might be OrdM , an ordinal in
M , or a �2 cut.

In the argument below, we will show that {lims h(α, s) : α ∈ I } is cofinal inOrdM .
Then we have two conclusions. Firstly, each requirement is assigned with some block
from some stage onwards. Secondly, we want to say that {r(α, s) : s ∈ OrdM } is
bounded in OrdM for any α ∈ I . By Lemma 6.2, if h(β, s) is stabilized from some
stage s0 onwards, then for each α such that α < β and each stage s > s0, there is no
x < r(a, s) enumerated exactly at stage s. Thus,

X ∩ r(α, s) = Xs ∩ r(α, s).

Fix an α < β. If {r(α, s) : s ∈ OrdM } is cofinal in OrdM , then for each s ∈ OrdM ,
elements in X ∩ r(α, s) are determined recursively, and so are those in X , deriving a
contradiction (cf. Lemma 6.6).

Lemma 6.3 {lims h(α, s) : α ∈ I } is regular.
Proof Fix δ ∈ OrdM . By Lemma 6.1, {α : ∀s (h(α, s) ≤ δ)} ⊆ I . Con-
sider its complement. By �1-Foundation, there is a least ordinal, say α0, such that
∃s (h(α0, s) > δ). Note that for any s > δ and α < α0, h(α, s) = h(α, δ). Thus,
{lims h(α, s) : α ∈ I } � δ = {h(α, δ) : α < α0} is M-finite. ��

Now suppose H = {lims h(α, s) : α ∈ I } is bounded, and α0 is the ordinal defined
in the proof of Lemma 6.3. Then α0 = I .

Lemma 6.4 Assume that {lims h(α, s) : α ∈ I } is bounded. Then the ordinal α0
defined above is not limit.
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Proof Assume that α0 is limit. Let t be a stage such that for all α < α0, h(α, t) =
lims h(α, s). Let s be the least stage such that h(α0, s) > h(α0, t). By Lemma 6.2,
there is α with α +1 < α0 such that some x < r(α, s) is enumerated into X at exactly
stage s. Thus, h(α + 1, s) > h(α + 1, t). This is a contradiction. ��

By Lemma 6.4, α0 = β0 + 1 for some β0. Without loss of generality, we assume
that β0 is even. Then [0, h(β0, s)) is the limit of Block β0 and we denote it by B. Let
s0 be the least stage such that lims h(β0, s) = h(β0, s0).

Lemma 6.5 Assume that {lims h(α, s) : α ∈ I } is bounded. Then X is recursive.

Proof By the construction, for every stage s > s0, A<s � r(β0, s) = A � r(β0, s) and
from stage s0 + 1 on, both r(β0, s) and m(β0, s) are nondecreasing.

Since lims h(β0 + 1, s) = ∞, there are cofinally many stages such that Xs �
r(β0, s) �= X � r(β0, s). Since X is regular, lims r(β0, s) = ∞. Thus, lims m(β0, s) =
∞. This implies that for every stage s > s0, e ∈ B, �A<s�r(β0,s)

e [s] � m(e, s) = X �
m(e, s).

For every δ, let s > s0 be a stage such that m(β0, s) > δ. Then X � δ =
�

A<s�r(β0,s)
e [s] � δ, where e ∈ B is such that m(e, s) > δ. Therefore, X � δ =

X [s] � δ. ��
By Lemma 6.5, {lims h(α, s) : α ∈ I } is unbounded in OrdM . For every α ∈ I , let

Bα = [0, lims h(α, s)), the limit of Block α.

Lemma 6.6 X �T A and X �T B.

Proof We only prove that X �T A. The proof of X �T B is symmetric. For the
sake of contradiction suppose X = �A

e , α ∈ I is even and s0 is a stage such that
e < lims h(α, s) = h(α, s0) < lims h(α + 1, s) = h(α + 1, s0) < s0.

By the construction, from stage s0 on, if�A
e [s] computes anything, its computation

is preserved. Thus, �A
e [s] = X � dom(�A

e [s]). Thus, M-finite subsets of both X and
X can be effectively enumerated via�A

e [s], s > s0. That implies X is recursive, which
is a contradiction. ��
Question 6.7 Is the Sacks Density Theorem true in all models of Level 1-KPL?
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