
Issues in Translating Smalltalk to Java

R L Engelbrecht and D G Kourie
Object Technology Expertise Centre, Department of Computer Science, University of Pretoria,

Fretofia 0002
dkourie@cs.up,ac.za, mdi @jupiter.cs.up.ac.za

Abstract: A number of essential issues in translating Smalltalk to Java are addressed. A
convention is proposed for mapping Smalltalk method selectors to Java method names. In
addition, a Java class hierarchy that parallels the Smalltalk class hierarchy (including the
metaclass objects) is suggested. These proposals are used to support ways of mapping both
Smalltalk instance and class methods to their Java counterparts.
Keywords: Smalltalk, Java, translation, Java byte code, instance methods, class methods,
reflection, object oriented programming.

1. Introduction
Because of the availability of standardised Java Virtual Machines (JVM's) across a
variety of platforms, languages other than Java are becoming as portable as Java
itself. All that is required is a mechanism for translating source code written in the
particular language into Java byte code (JBC). The resulting JBC can then be
interpreted on any platform running a JVM. (See Lindholm and Yellin (1996), and
Meyer and Downing (1997) for a comprehensive specification of the JVM.)

Translators to JBC as well as interpreters already exist for many source languages,
including Ada (AppletMagic), BASIC (Halcyon Sottware), COBOL (Synkronix),
C++ (Tilevich), Forth (Misty Beach Software), Scheme (Bothner). However, because
of Smalltalk's unique characteristics, several challenging issues come to the fore when
implementing a Smalltalk to JBC translator. The work of Chambers (1992) and
Piamarta (1992) might offer some clues as to how certain problems might be
resolved, but to the authors' knowledge no studies have fully resolved all the
problems.

Smalltalk originated at Xerox PARC in the early 1970's. It is a dynamically typed
programming language. Alan Kay, the chief architect of Smalltalk, summarises five
basic characteristics of Smalltalk as follows (cited in Bergin and Gibson, 1987):

• Everything is regarded as an object.
• A program specifies a sequence of messages to be sent and received by a

collection of objects, each object carrying out whatever action is implied by a
message it receives.

• Each object has its own memory that may be made up of other objects.
• Every object has a type.
• All objects of a particular type can receive the same messages.

Full details on Smalltaik may be found in Goldberg (1981) and in Goldberg and
Robinson (1983).

In contrast, Java is a relatively new, strongly typed language from Sun
Microsystems, Inc. There are a number of similarities between the Smalltalk and Java
environments, of which the following are perhaps the most pertinent.

1) Object-oriented: Smalltalk and Java are both object-oriented, dynamic languages.

250

2) Interpreted: Code produced in each of the environments is interpreted by a virtual
machine. The standardised virtual machine used in Java is called the JVM and
has already been mentioned above. There are also compilers in both
environments that compile to native machine code for a specific platform.

3) Garbage collection: Objects that need no longer be retained in memory, do not
need to be specifically removed by the programmer in order to free up memory.
The environment automatically takes care of such memory management.

4) Comprehensive class library. Both Smalltalk and Java are released with an
extensive set of classes available for reuse.

5) Object references: In general, objects are passed by reference (not by value)
when a function call is made. Java has an exception in that when an object is one
of a few primitive types (e.g. integer, double and float) then the object is passed
by value.

This article supplements Smailtalk and other programming languages to JBC
translation studies to date (e.g. Bothner, Hardwick and Sipelstein (1996) and Odersky
and Wadler (1997)) by proposing solutions to key issues that have either not yet been
resolved, or that have been resolved differently by other authors. Proposals put
forward below are being implemented in a prototype Smalltalk to Java translator,
which is in turn implemented in Smalltalk. However, the focus here is on broad
design issues, rather than details of the prototype implementation. The general style of
presentation is:

• to state a particular Smalltalk to JBC translation problem in generic terms;
• to provide examples of Smalltalk code that illustrate the problem;
® to suggest general Smalltalk to Java translation rules that resolve the problem

(perhaps only partially); and finally
• to give Java code that illustrates the results of applying these rules.

Clearly, all derived Java code has its JBC equivalent. However, it is conceivable that
a subset of Smalltalk code cannot be reasonably mapped onto Java code per se, but
has to be mapped directly onto JBC. The present study provisionally excludes
consideration of Smalltalk code that may be constrained in this way.

This article focuses on the following translation issues in turn. In section 2, a
convention for mapping Smalltalk method selector names to Java method names is
given. The next section addresses the matter of simulating Smalltalk objects in the
Java typed environment. The translation of Smalltalk instance methods to Java
instance methods is dealt with in section 4, while section 5 considers the translation of
Smalltalk class methods to Java static methods. In section 6, some of the remaining
problems in translating Smalltalk to Java are enumerated.

2. From Smalltalk method selectors to Java method names

In Smalltalk the method names are divided into three message groups: unary
messages; binary messages; and keyword messages. A unary message is a message
without arguments. A binary message is a message with a single argument and a
selector that is one of a set of special single or double characters. A keyword message

251

has one or more arguments and a selector made up of a series of identifiers with
trailing colons, one preceding each argument.

The first three examples in figure 1 illustrate messages belonging to each of the
three respective message groups. The fourth example illustrates a keyword message
with two arguments.

Unary message frame' minimize
Binary message frame + field
Keyword message frame moveTo: aNewLocation
Keyword message frame replaceButton: button1 withNewButton: button2

Fig 1. Examples of Smalltalk Messages

It is relatively easy to devise rules for translating messages in each of the three
message groups from their Smalltalk format to a suitable Java format. In general,
each Smalltalk message sent to an object should be mapped to a Java invocation of
the object's method using the Java notation <0bjaet>.<methed_invoeatian>. The
following rules are proposed for unambiguously translating the messages and their
associated arguments and selectors to Java method invocations, including actual
arguments where appropriate.

Note that these rules can also be used to deduce partially the corresponding Java
method's declaration, although names for the formal parameters must be found with
reference to the corresponding Smalltalk method's definition. Furthermore, for
reasons that will later become clear, in declaring Java methods translated from their
Smalltalk counterparts, it will be convenient to specify that they all return objects of
type stj.Objeet.

1. A unary message is mapped directly to the equivalent Java method name without
any arguments, i.e. minimize maps directly to the invocation minimize().

2. The selector of a binary message maps to a specially defined Java method name,
the argument of the binary message becoming the actual argument of the
corresponding Java method invocation. For example + argument1 maps to an
invocation plus(argumentl~ where plus is a specially defined Java method name. In
Smalltalk it is possible that the Integer class could redefine the behaviour of the +
message. In Java, however, it is not possible to redefine the + keyword as it is part
of the language definition. To provide for this Smalltalk functionality a lookup
table will be used where + maps to plus and- maps to minus.

3. The sequence of identifiers in a selector of a keyword message maps to a single
Java method name. This name is composed by joining the sequence of selector
identifiers together as one long name, but replacing each occurrence o f ' : ' by '_ ' .
Furthermore, each argument of the keyword message becomes an actual argument
(of type stj.0bjeet - see below) of the Java method invocation. Thus, translations
from Smalltalk methods to Java invocations will be as follows:
moveTo:aNewLocation becomes moveTo (aNewLocation))
replaceButton:buttonl withNewButton: button2 becomes

replaceButton_withNewButton_(buttonl, button2)
If rule 1 or rule 2 maps to one of the reserved Java keywords, for example new or

class, resulting in a method being named; class() or class(argument), it will be prefixed
with stj_, result ing in stj__classO or stj_class(argument).

252

4. Note that these rules are indeed unambiguous. For example, if a unary Smalttalk
message called plus existed, it would map to a Java invocation plus(), by the first
rule. If a binary Smalltalk message ÷ existed, it would map to a Java invocation
ptuslar0umentl) by the second rule. If a Smalltalk keyword message plus: argument1
existed it would map to the Java invocation plus(argume~l~, by the third rule. In
neither case is there any ambiguity with respect to the mapping in the example of
the second rule.

Whenever one of the above Smalttalk messages is sent to the Smalltalk object frame,
this corresponds to the invocation of a corresponding Java method using the syntax
illustrated in figure 2 respectively:

java Code Smalltalk code
frame minimize frame,minimize(l;
frame plus fr,ame:,p!us!)i,

frame.plus(field)i, frame + field
frame plus: field frame.plus (field);
frame m o v e T o : frame.moveTo_bNewLocation);

aNewLocation
Frame replaceButton 1: b 1 frame.replaceButton_withNewButton_(b 1,b2);

withNewButton: b2
Fig 2. Translations to Java method invocations

3. The Java class hierarchy for Smalltalk translations
It will be convenient to distinguish between Java objects derived from the Smalltalk
translation, and other Java objects. In a Smalltalk system, all the objects have one root
type, called Object. In the Java translation, this root type corresponds to a Java class
denoted by stj.0bject. It is a subclass of java.lang.0bjeet and serves as the root class of all
other Smalttatk-translated-to-Java objects. An arbitrary Smalltalk subclass of Object,
say SomeClass will thus be translated to be a subclass of the Java class stj.0bjeet and will
be named stj.SomeClass. The translation algorithm should assure that this is done in a
way that the original Smalltalk program's class hierarchy is retained.

The structure of the resulting Java class hierarchy is depicted in figure 3 below.
Several advantages to be gained from this scheme will become apparent in later
sections.

4. From Smalltalk- to Java instance methods
One of the matters to confront in the present context is the fact that Smalltalk is a
dynamically typed language whereas Java is statically typed.
In the case of Smalltalk, therefore, local variables are not restricted to a specific class
or type when they are declared. During runtime, an object of one class may be
assigned to a local variable at some stage, and then an object of an entirely different
class may be assigned to the same variable at a later point in the computation.
Whenever a variable is used to represent an object that receives a message, then the
message should obviously correspond to a method in the object's class or superclass.
Since there is no restriction on what the object's class or superclass may be during

253

runtime, non-compliance with the foregoing results in a runtime error rather than a
compile-time error.

In the Java case, the class of a variable is fixed at declaration: during runtime the
variable can only be assigned an object of either its declared class, or of a subclass of
its declared class. The variable's class declaration thus constrains the way in which the
variable may be used to represent an object, and a violation of this constraint will be
identified at compile time. In particular, if a variable representing an object is used as
part of the syntax to invoke a Java method, and the method is not in the object's class
or superclass (or superclass hierarchy), then a compile-time error results.

java.lang.Object I

I stj'Object I I java'lang'BOOlean
/ /'

stj.Boolean java.lang.True

?
stj.True 1 t ~"",,,c'-',,,I Java class

Fig 3. Proposed Java class hierarchy for Smalltalk translations

In summary, then, when a message is sent to an object in Smalltalk, the method to be
executed is only determined at runtime by the virtual machine. In Java, the compiler
restricts the callable methods by referring to the declared type of the object. As a
consequence, two problems arise when doing a direct translation to Java: deciding
what Java type should be assigned to Smalltalk-translated variables; and deciding how
Java code should be constructed to simulate Smalltalk's runtime binding of methods.
A solution to the first of these problems, and two solutions to the second problem are
discussed below.

4.1Java Types for Smalltalk Variables
While it might be possible, in some limited contexts, to infer a Java type that tightly
constrains a Smalltalk variable, it is not possible to come up with a general scheme to
do this. Consider, for example, the Smalltalk code in figure 4.

This purely hypothetical example consists of a method that accepts a Boolean
argument isBag and an object as parameters. If isBag is true then an instance of Bag is
assigned to the variable aCotlectio~ The type of aC011ecti0n will be Bag. If isBag is false then
aCollection will be assigned an instance of Set. The type of aCollection is then Set. Clearly,
this runtime determination of the type of aC011ection cannot be handled directly in Java.
A solution in Java would be to declare the variable aC011ecti0n as the type of the most
specific common superclass of both Bag and Set. In Smalltalk, Collection is the most
specific superclass. However, it is not feasible to identify, as part of the translation

254

process, the set of possible classes that a variable might be typed as during runtime,
and then to determine the most specific common superclass of classes in this set. It is
far simpler merely to use the common superclass of all the Smalltalk objects in Java,
namely stj.0bject as the Java type of all Smalltalk local variables.

SampleClass > > returnCollection:isBag withObject: anlnteger
I aCollection I
isBa9 ifTrue: [aCollection :- Bag new]

ifFalse: [aCollection : - Set new].
aCoUection add: anlnteger
AaCollection

Fig 4. Smalltalk SampleClass example

The translated Java code of the above Smalltalk method is given in figure 5. Note
that the translation rules lead to typing both isBag and anlnteger as stj.0bject. In order to
carry out the test of the conditional statement, a Java class sti.Trua is defined (see figure
3). This class has a variable stLtrue of type stj.True that has been initialized to a value
equivalent to the Smalltalk object true. {Note: In Smalltalk there is one instance of the
class True {namely true) and one instance of the class False (namely false). For a concise
overview refer to Fussel.

public class SampleClass extends stj.Object {
public stj.Object returnCollectionwithObject_istj.Object isBa9,

stj.Object anlnteger) {
stj.Object aCollection;
try {

if (((stj.Boolean)isBag)JsTrueO)
aCollection = newstj.BagO

else
aCollection = newstj.SetO;

} catch(...) { / * isBag is not a standardboolean, lose * / }
aCollection.add_~nlnteger);
return aCollection; }

Fig 5. Java SampleClass translation

In this Java code aCollection has been declared as type stj.Object. Since, by virtue of
section 3, stj.Bag and stj.Set are both subclasses of stj.CeUectien, which in turn is a subclass
of stj.0bject, the respective assignments to aCallectian will be accepted as correct by the
compiler, provided that stj.0bject or an appropriate subclass has a method defined as
add_(stj.Object).

4.2 Reflection-based runtime method binding
The Java code above also contains an invocation to a method aCollection.add (anlnteger)
that has been directly translated from the Smalltalk code above, using the translation
rules of section 2. The assumption is that if and only if there was a Smalttalk instance
method of add in the Smalltatk class Set (and/or Bag, and/or Collection and/or Object), then
the same method would be translated into a Java instance method in the Java class

255

stj.Set (and/or stj.Bag, and/or stj.Object respectively). The Java translated code should
behave as closely as possible in the Java environment to the original SmaUtalk code in
the Smalltalk environment, both at compile time and at run time. In particular, the
Java environment should report an error at exactly the same point (compile time or
run time) at which the Smalltalk environment would report it.

One possible approach to achieve this close simulation in Java would be to make
use of reflection. (For an introduction to reflection refer to Bekker (1993) and Maes
(1987).) With the release of the Java Development Kit (JDKI.1) by Sun
Microsystems, Inc. a reflection API has been added whereby the Java environment
can interrogate and act upon itself in various ways (JavaSoft (1997)). For example, a
class can be interrogated for a list of all its methods; and an arbitrary method name
can be assigned to a variable and used as a parameter in a call that, in turn, invokes
whatever method that variable represents. All of this occurs at runtime. It is therefore
possible to invoke methods of objects in a dynamic way.

Small talk incorporates Object > > perform: and Object > > perfomzwith: messages,
whereby a message name can be constructed dynamically at runtime and then be sent
to an object. Relying on the reflection API, the same functionality can be
implemented in Java by adding matching methods to stj.0bjaet called p~orm_0,
perform_with_() etc. As an example, code for the perform with (I method is given in figure
6.

public stj.Object perform_withJava,lang.String methodName, stj.Object argl) {
stj.Object result - null;
java.lang.reflect.Method method - null;
java.lang.ClasstheClass - null;
java.lang.Class[] argClasses = newjava.lang.Class[1];
java.lang.Object[] ergs - new java.lang.Object[1];
theClass - this.getClassO;
args[O] - argl;
argCtasses[O] - stj.Object,stj_niLgetClassO;
try { method - theClass.getMethodlnethodName, argClasses); }
catch (NoSuchMethodException e)

{ System.out.println("Error: NoSuchMethod"); }
catch (SecurityException e) { System.out.println("Error: Security"); }
try { result - (stj.Object) method.invoke (this, args); }
catch (NutlPointerException e) { System.out.println("Error:NullPointer); }
catch (lllegatArgumentException e)

{ System.out.println("Error:lllegalArgument"); }
catch (lllegalAccessException e)

{ System.out.println("Error:lllegalAccess"); }
catch (InvocetionTargetException e)

{ System.out.println("Error:lnvocationTarget"); }
return(result); }

Fig 6. Java perform_with_ method

In essence, perform with 11 makes use of two reflection API methods within two try
statements: getMethod and method.invoke respectively. The various associated catch

256

statements are required by the language definition, and should not distract from the
overall understanding and logic of the perf0rm_with 0 method in the figure.

Consider the use of this reflective method in the context of the previous example
(i.e. adding an element to a collection that may either be a bag or a set). Use of the
perform with () method means that the translation of the Smalltalk code aCdlecti0n add:
anlnteger should be rendered as:

aColleetion.perform_with_('add_', anlnteger)
instead of as aCollection.add_lanlntegerL The resulting Java system behaves exactly as its
Smalltalk counterpart in the following senses:
• At compile time, no attempt is made to check that the arguments of perform with

make run-time sense, except to verify that actual argument types match those of
the formal arguments. Compilation could be successful, even if there was no
add_(anlnteger) method in the entire system.

• If, at run time, aC011eeti0n is instantiated as an stj.Set object, then an stj.Set method,
aColleeti0n.add_(anlnteger) is invoked. If such a method had not been defined in the
stj.Set class, or in any predecessor class, then an appropriate run time error
message is issued.

The foregoing remark applies pari passu, should aC011ection have been instantiated as an
stj.Bag object

It might be suspected that the above way of sending messages to objects in a truly
dynamic way would be slow. In fact, tests done with the Sun JDK and Microsoft JDK
indicate that it takes at least 200 times longer to invoke a method in this fashion, as
compared with a normal method invocation. Until the JVM vendors provide
optimised versions of the above methods used in the reflection API, this approach
does not seem practical.

4.3 Superclass-based runtime method binding
This section discusses an approach to simulate Smalltalk's run-time instance method
binding that is both simpler and more efficient than the reflection approach just
discussed. It is therefore the preferred approach for use in the prototype under
development. Two categories of methods are placed into the Java system:

1. As before, it is assumed that each method of Object and each method of its
subclasses is translated into an equivalent Java method of stj.0bjeet and its
subclasses respectively.

2. In addition, for every message sent in the code of the Smalltalk system, a
corresponding "default handler" method of the Java class sti.0bjeet is constructed
(provided that the message does not already have a corresponding method in
stj.0bject by virtue of 1. above.) This default method invokes the doesNotUnderstand
method implemented on stj.0bject. The implementation of deesNotUnderstand raises an
exception to notify a debugger that an error occurred. This implies the complete
Smalltatk program needs to be present during translation.

Thus, referring to the SampleClass example in figure 4, because aCollectien add: anlnteger
appears in the Smalltalk code, the above rule specifies that a Java method add_ (stj.0bjeet
argll must be added to the class stj.0bjeet, as illustrated in figure 7. below.

257

public class stj.Object {
I public stj.Object add_(stj.Object argl} {
I System.out.println('Object > > doesNotUnderstand: #add:n);
] return this; } }
Fig 7. Superclass default method example

Recalling that the Smalltalk code aC011ection add: anlnteger was translated to the Java
method invocation aCollection.add_(anlnteger), note that this invocation wilt always be
regarded as type-correct by the Java compiler, irrespective of the class of object that
the variable aCollection refers to (as long as the type of aC011ection is a subclass of stj.0bject).
If, at some point during runtime, the variable aC011ection refers to an instance of Set, and
Set has no method called add_, then the add method of the superelass stj.Collectinn will be
used, or the add_method of stj.0bject in that order.

By implementing the Java code in this way, not only are dynamically typed
objects simulated, but the dynamic dispatch of messages at runtime is also simulated.
Another benefit of this approach is that the speed of the resulting code approximates
the speed of normal Java code with types in the variable declarations.

5. Smalltalk class method simulation
There is a subtle problem in translating Smalltalk class methods to Java. It is rooted in
the fact that in Smalltalk, all classes are treated as first class objects. Java does not
fully reflect this property. It is problematic if a straight translation is attempted that
maps Smalltalk class methods to Java methods. The required static prefix in a Java
class method declaration implies that the method does not possess dynamic properties
such as those illustrated in the following Smalltalk example.

The example is based on a common practice in Smalltalk: to write a class method
in a superclass that creates initialized objects for itself and its subclasses. Consider the
Vehicle class in figure 8 below which is a superclass of the class BMW.

Vehicle is subclass of Object.
Vehicle class > > newlnitializedObject

I instance 1
instance := self new.
instance initialize.
^instance

Vehicle > > initialize
Transcript cr; show: 'Vehicle > > initialize called'.

BMW is subclass of Vehicle
BMW > > initialize

Transcript cr; show: 'BMW > > initialize called'.
Fig 8. Smalltalk Vehicle class

Vehicle has the class method newlnitialized0bject and the instance method initialize. In the
method newlnitialized0bject, an object is created by sending the message new to self (in this
case self refers to the class object associated with the method) and a new instance of
the class object is returned. Depending on the context in which the method executes,

258

it returns different types of objects. Evaluating Vehicle newlnitializedObject returns an
instance of the class Vehicle and BMW newlnitialized0bject will return an instance of the class
subclass BMW. Furthermore, the former message calls Vehicle initialize, while the latter
calls BMW initialize. Thus:

® Vehicle newlnitialized0bject will return an instance of Vehicle and print 'Vehicle > >initialize
called', while

BMW newlnitialized0bjeet will return an instance of BMW and print 'BMW > >initialize called"

In attempting to simulate the above behaviour in Java, two approaches are outlined
below. The first illustrates the problem caused by a direct translation to Java's static
class methods, while the latter shows an alternative way in which dynamic class
methods can be simulated in Java.

5.1 Static Java class methods
The approaches proposed in section 2, 3 and 4 to arrive at Java code from the
Smalltalk code, indicate the following Java translations associated with Vehicle (and
similar translations for BMW):

a} a Java class called stj.Vehicle for the Smalltalk class called Vehicle;
b) a Java subclass of stj.Vehiele called stj.BMW for the Smalltalk class called BMW;
e) in the Java class called stj.Vehicle, a Java class method called newlnitialized0bject;
d) in the Java class called stj.Vehicle, a Java instance method called initialize;
e) in the Java class called stj.BMW, another Java instance method called initialize;
f} the invocation: stj.Vehicle.newlnitialized0biect for any Smalltalk message Vehicle

newlnitializedO bject;
g) the invocation: stj.BMW.newlnitializedObject for any Smalltalk message BMW

newlnitializedObject
J

Figure 9 shows these translations, where the Java class methods are declared with the
required static prefix. A further class method called stj_Class0 is provided in both
stj.Vehicle and stj.BMW and is invoked from newlnitialized0bjeet in line 4. stj_ClassO relies on
the reflection API method ferName (in lines 9 and 18 respectively) to return the class in
which it is declared (either stj.Vehicle or stj.BMW). In line 4., the reflection API method
newlnstance(} is then invoked to generate an instance of the returned class. In line 5., the
initialize() method of this generated instance is invoked.

However, if tested with the following code, it will be found that this Java
implementation does not behave as the Smalltalk counterpart.

1: st j .Objectcar = null;
2: car = stj.Vehicle.newlnitializedObject);

3: car = stj .BMW.newlnit ial izedObjecl);

Both in lines 2 and 3 is 'Vehicle> >initialize called'printed out. The reason for this is that
Java static methods are truly static, resulting in Vehicle's stj_Class0 being called in line 3.
when one might have hoped that BMW's stj_ClassO would be called instead.
Consequently, an instance of Vehicle is then returned and not an instance of BMW.
Clearly, then, an alternative approach to simulating Smalltalk class methods is re-
quired.

259

1. public class stj.Vehicle extends stj.Object {
2. public static stj.Object newlnitializedObject 0 {
3. stj.Object instance - null;
4. instance - (stj.Object)stLClass()zewlnstanceO;
5. instance .initialize();
6. return instance;
7. public static java.lang.Class stj_ClassO {
8. java.lang.ClassthisClass - null;
9. try { thisClass - jeva.lang.Class.forName('~tj.Vehicle"); }
10. catch (ClassNotFoundException e)

{System.out.println("Error: Class not found"); } }
public stj.Object initialize() {

System.out.println("Vehicle > > initialize called");
return this;

11.
12.
t3.
14.
15.
16.
17.
18.
t9.

20.
21.
22.

public class stj.BMW extends stj.Vehicle {
public static java.lang.Class stj_ClassO {

java.lang.ClassthisClass - null;
try { thisClass - java.lang.Class.forName("stj.BMW"); }
catch (ClassNotFoundException e)

{System.out.printlnl"Error: Class not found"); } }
public stj.Object initialize_() {

System.out.println("BMW > > initialize called");
return this; }

Fig 9. Static Java Vehicle class

5.2 Dynamic Java class methods
The following indicates how the Java translation of Smalltalk classes can be designed
to simulate dynamic binding of class methods. It is based on approximating in Java
the Smalltalk class hierarchy (including meta classes). Smalltalk has the following
(Goldberg and Robinson (1989, p269-p271)):

a) There are two kinds of objects in the system: those that can create instances of
themselves (called classes) and those that cannot. Every object is an instance of a
class.

b) Every class is a subclass of class Object. Object itself has no superclass.
c) Each class is itself an instance of a class, termed a metaclass. A metaclass has

only one instance. The class Object is not excluded from this and also has a
metaclass.

d) The hierarchy of metaclasses is rooted in the metaclass of Object and this hierarchy
mirrors that of the associated class instances. However, whereas Object has no
superclass, the metaclass of Object has a superclass called Class. All metaclasses are
therefore subclasses of Class.

e) Metaclasses also being objects, are instances of a class called Metadass.

The structure is depicted in figure 10, and includes the classes and metaclasses found
in the Smalltalk system for Vehicle and BMW. Solid arrows in the figure represent
subclass relationships, while dashed arrows represent instance relationships. Note
carefully that 0bject's metaclass is indeed a subclass of Class, in accordance with (d).

260

I Objec! 1 ~10bject'smetaclass--] ~'l Metaclass

l't Classlmetaclass I i I i

[e,,de t [...

Fig 10. Smalltalk's class and metaclass structure

To provide for dynamic binding of Java class methods, it will be helpful to mirror this
Smalltalk class hierarchy structure in the translated system, prepending each Java
class by stj. as before. However, there will be no need to define a Java class stj.Metaetass.
The name for the metaclass of Object will thus be stj.Object_metaclass and the name for the
metaclass of Class will be stj.Class_metactass

The Java code is designed to simulate the metaclass of a class if and only if the
class has a class method. This design allows for dynamically binding a class method
when it is invoked at runtime. The principle is illustrated in figure 11 below, in terms
of the previous Vehicle example.

Two classes, stj.Vehicle metaclass and stj.BMW_metaclasshave been defined with instance
methods (which are thus dynamic) replacing the class methods (which had therefore
been static) of the previously defined classes stj.Vehicte and stj.BMW respectively. In the
case of stj.Vehicle_metaclass the relevant instance methods are newlnitiatizedO~ctO and
stj_new0. In the case of stj.BMW_metaclass the only relevant instance method is stj_new0.
Note that the classes stj.Vehicle and stj.BMW are also defined, but each class defines only
its original instance methods. (In each of these cases there is a single instance method,
initialize().)

The result is that a Smalltalk class that has a class method is simulated by a
composite of two classes in Java. The first Java class deals with Smalltalk instance
methods as previously discussed. The second Java class contains the Smalltaik class
methods in the form of Java instance methods. An instance of the Java class
stj.Vehicle__metaetass has to be created before its instance methods can be used, and in this
sense, the Java class behaves similarly to (i.e. simulates) a Smalltalk metaclass as
described in (c) above.

The new version of the previously given code appears below.
1 stj.Object car = null;
2 car = (stj.Vehicle_metaclass,classlnstance)newlnitiatizedObjectO;
3 car ~ (stj.BMW metaclass.class]nstance)newlnitializedObjectO;

Functionally, this code seems to achieve the same as before: it assigns an instance of
Vehicle to the variable car, prints out "Vehicle > > initialize called" assigns an instance of BMW

261

to the variable car, and then prints out "BMW > > initialize called". However, the call to the
class method newlnitiaized0bject0 is now bound at runtime, resulting in the right methods
being called. Specifically, lines 4 and 5 will now invoke the fight versions of stj__new0
and initialize() respectively.

1 public class stj.Vehicle_metaclass extendsstj.Object_metaclass {
2 public stj.Object newlnitializedObjectO{
3 stj.Object instance - null;
4 instance = this.stLnewO;
5 instance.initialize();
6 return instance; }
7 public stj.Object stj_newO {
8 return new stj.VehicleO;} }
9
10 public classstj.Vehicle extendsstj.Object {
11 public stj.Object initialize() {
12 System.out.println("Vehicle > > initialize called");
13 return this; } }

1 4
15 public class stj.BMW_metaclass extendsstj.Vebicle_metaclass {
16 public stj.Object stj_newO {
17 return new stj.BMWO; } }
18
19 public class stj.BMW extends stj.Vehicle {
20 public stj.Object initialize() {
21 System.out.println(,'BMW > > initialize called");
22 return this; } }
Fig 11. Dynamic Java Vehicle class

Note that stj.Vehicle_metaclass.classlnstance relates to an aspect of the Java metaclass
simulation that, for reasons of brevity and clarity, has not been fully elaborated in
figure 11. In the full version, a static variable called classlnstance of the class
stj.Vehicle_metaclass is declared. This variable is instantiated to an instance of
stj.Vehicle_metaclass at start up time and may thereafter be used as in the context above.
The single instantiation that occurs in the Java translation mirrors the fact that a
Smalltalk class is a single instance of its corresponding metaclass. Arbitrarily to cre-
ate multiple instances of stj.Vehiclemetaclass would violate the Smalltalk paradigm. The
same applies for stj.BMW_metaclass.classlnstance.

6. Future work
Several Smalltalk to Java translation issues have not been addressed in the previous
paragraphs. The most important of these are briefly indicated below.

a) Smalltalk class variables can be represented as instance variables in the translated
Java "metaclass" object. Thus, in order to translate a Smalltalk class variable, say
AIIVehicles, in the Smalltalk Vehicle class, an instance variable stj.AIIVehiclas should be
added to the Java "metaclass" stj.Vebicle_metaclas-~ Locating a constructor in the

262

"metaclass" will ensure that the simulated class variable is initialised during
runtime, as is the case for initialising the corresponding Smalltalk class variable.

b) Smalltalk class instance variables can be translated in the same way as class
variables in (a). In Smalltalk all class instance variables start, by convention, with
a lower case while class variables start with an upper case. Provided this naming
convention is adhered to, there will be no conflict if the translation rule in a) is
also applied to instance variables.

c) The Smalltalk method altlnstaneas returns a collection of all the instances of a
specific class. It is a class method. To implement alllnstaneas in Java would involve
enhancements to each class in the stj.Object hierarchy. Each class would have to
keep track of its instances (i.e. objects) created by the use of stLnewO.

d) In Smalltalk it is possible to add a method dynamically (i.e. at runtime) to an
object. In Java, a class has to be completely recompiled for methods to be added.
Initial investigation resulted in a way of adding classes at runtime, but requires
existing class instances to be migrated to the new version of the class.

These unresolved issues do not constitute a complete list. Indeed, several other issues
require further study. For example, Budd (1987) discusses problems associated with
implementing a Smalltalk compiler and virtual machine. Another important
outstanding issue is that of translating Smalltalk blocks to Java. These issues are the
subject of ongoing studies.

7. Conclusion
In one sense, this article provides the translation semantics of key Smalltalk
constructs in Java. In doing so, it serves to highlight the similarities and differences
between the two languages. The fact that a significant part of Smalltalk code can be
translated to Java code by applying a few simple rules testifies to the similarities
between the languages. Section 6 has identified further areas where, in principle,
translation seems possible. There are additional areas where translation appears to be
infeasible (for example, Smatltalk's beeoms: method). Nevertheless, this work offers
prima facie evidence that it will be possible to obtain reasonably efficient JBC
versions of most Smalltalk programs. To this extent it will be possible to extend the
range of platforms on which such Smalltalk programs can be run.

References
AppletMagic, http ://www.appletmagic.com.
Bekker C, Relationships and Reflection in the Object-Oriented Paradigm, M.Sc. Dissertation,

Department of Computer Science, University of Pretoria, 1993.
Bergin TJ and Gibson RG, History of Programming Languages - ti, Addison-Wesley, 1996,

Kay AC, The Early History of Smalltalk.
Bothner P, Translating Smalltalk to Java, http://www.cygnus.com/~bothner/smalltalk.html
Bothner P, Kawa, The Java-based Scheme system, http:l/www.cygnus.coml

~bothner/kawa.html.
Budd T, A Little Smalltalk, Addison-Wesley 1987.
Chambers C, The Design and Implementation of the SELF Compiler, an Optimizing Compiler

for Object-Oriented Programming Languages, Ph.D. Thesis, Department of Computer
Science, Stanford University, March 1992.

263

Fussel ML, Java and Smalltalk syntax compared, http://www.chimu.com/
publications/JavaSmalltalkSyntax.html

Goldberg A and Robson D, Smalltall¢-80: The Language and its Implementau'on, Addison-
Wesley 1983.

Goldberg A and Robson D, Smalltalk-80: The Language, Addison-Wesley, 1989.
Goldberg A, Introducing the Smalltalk-80 System, Byte, Vol. 6, No. 8, Aug. 1981
Halcyon Software, http://vcvcw.vbix.com.
Hardwick JC and Sipelstein J, Java as an Intermediate Language, School of Computer Science,

Camegie Mellon University, Pittsburgh, PA, August 1996.
JavaSoft, The Java Core Reflection API and Specification, http://java.sun.com. January 1997.
Lalonde W and Pugh J, Inside Smalltalk: Volume 1, Prentice Hall, Inc. 1990.
Lindholm T and Yellin F, The Java Virtual Machine Specification, The Java Series, Addison-

Wesley 1996.
Maes P, Concepts and Experiments in Computational Reflection, Proceedings of OOPSLA 87,

1987.
Meyer J and Downing T, Java Virtual Machine, O'Reilly & Associates, Inc. 1997.
Misty Beach Software, http://www.mistybeach.com/Forth/JavaForth.html.
Odersky M and Wadler P, P/zza into Java: Translating theory into practice, Proceedings of the

24 th ACM Symposium on Principles of Programming Languages, Paris, France, January
1997.

Piamarta IK, Delayed Code Generation in a Smalltalk-80 Compiler, Ph.D. Thesis, Department
of Computer Science, University of Manchester, October 1992.

Synkronix, http://www.synkronix.com.
Tilevich I, http://pacevm.dac.pace.edu:80/-ny971734/c2j.htmt.

