
Silhouette-Based Object Recognition with
Occlusion through Curvature Scale Space

Farzin Mokhtarian

Department of Electronic and Electrical Engineering
University of Surrey, Guildford, England GU2 5XH

E-maih F.Mokhtarian@ee.surrey.ac.uk

Abstrac t . A complete and practical system for object recognition with
occlusion has been developed which is very robust with respect to noise
and local deformations of shape as well as scale changes and rigid mo-
tions of the objects. The system has been tested on a wide variety of
3-D objects with different shapes and surface properties. No restrictive
assumptions have been made about the shapes of admissible objects. An
industrial application with a controlled environment is envisaged. The
Curvature Scale Space technique [4, 5] is used to obtain a novel multi-
scale segmentation of the image contour and the model contours using
curvature zero-crossing points. Multi-scale segmentation renders the sys-
tem substantially more robust with respect to noise and local shape dif-
ferences. Object indexing [9] is used to narrow down the search-space and
avoid an exhaustive investigation of all model segments. A local match-
ing algorithm applies candidate generation, selection, merging, extension
and grouping to select the best matching models.

1 I n t r o d u c t i o n

Object representation and recognition is one of the central problems in computer
vision. Normally, a reliable, working vision system must be able to a) effectively
segment the image and b) recognize objects in the image using their representa-
tions. A complete and robust isolated object recognition system was described
in [6, 3]. This paper describes a complete, working vision system which segments
the image effectively using a light-box setup and recognizes occluded objects in
the image reliably using their curvature scale space (or CSS) representations
[4, 5]. The CSS representation is based on the scale space image concept pro-
posed in [10]. It is an organization of curvature zero-crossing points on a contour
at multiple scales.

It is assumed that the recognition system developed here may be used for
recognition of occluded 3-D objects. In particular, it is assumed that a number of
objects are placed on a light-box directly in front of a camera and that the task
is to recognize each object. We believe that this particular task is interesting for
the following reasons:

- Despite the constraints placed on the environment, no constraints have been
placed on object shapes or types. Furthermore, environment constraints are
not difficult to satisfy in many recognition tasks (such as industrial settings).

567

- Every 3-D object resting on a fiat surface and viewed by a fixed camera, has
a few stable positions, each of which can be modeled by a 2-D contour.

- Recognition can still become challenging due to arbitrary shapes of objects,
noise, and local deformations of shape which can be caused by perspective
projection, segmentation errors and non-rigid material.

The existing literature on shape representation and recognition is quite large.
A survey of some recent work can be found in [9]. It should be noted that projec-
tive invariants [8] have received attention recently as tools for object recognition.

In general, a shortcoming of some object representation techniques is that
the features extracted from the objects and used for matching are too local
and therefore the resulting system is not robust with respect to noise and local
deformations of shape. In those systems in which less local features are used, the
utilized features are not necessarily inherent features of the object and therefore
have weak discriminative power.

Sections 2 through 8 of this paper explain various aspects of the object recog-
nition system developed. Section 2 briefly explains how the segmentation of an
image using a light-box system is accomplished. Section 3 reviews the CSS repre-
sentation as a multi-scale organization of the inherent features of a planar curve.
Section 4 shows how multi-scale segmentation of a 2-D contour using curva-
ture zero-crossing points may be accomplished. Section 5 describes a fast, local
matching algorithm. Section 6 proposes a procedure for estimating the trans-
formation parameters. Section 7 shows how the image-model curve distance can
be computed. Section 8 describes a procedure for efficient optimization of the
transformation parameters. Section 9 presents the results and an evaluation of
the system. Section 10 contains the concluding remarks.

2 I m a g e S e g m e n t a t i o n

The use of a light-box setup makes the segmentation of the image reasonably
straightforward. The same threshold value T was used to effectively segment
all input images. A salt-and-pepper noise removal procedure was applied to the
resulting binary image in order to remove isolated noise. The next step is to
apply a process of region growing followed by shrinking to the image in order to
fill in cracks and small holes. The resulting binary image always had only one
connected region of 1-pixels which corresponded to the objects. Next, boundary
pixels belonging to the region of 1-pixels are detected. The final step is to recover
the image coordinates of the boundary points.

3 T h e C u r v a t u r e S c a l e S p a c e R e p r e s e n t a t i o n

A CSS representation is a multi-scale organization of the invariant geometric
features (curvature zero-crossing points and/or extrema) of a planar curve (here,
only curvature zero-crossings were used). The CSS representation of a planar

568

curve represents tha t curve uniquely modulo scaling and a rigid motion [2]. To
compute it, the curve F is first parametrized by the arc length parameter u:

r(u)=(x(u),y(u)).

It is assumed that the input curve is initially represented by a polygon with
possibly many vertices. Therefore only the coordinates of the vertices of the
polygon need be given. If the distances between adjacent vertices of the polygon
are all equal, then an arc length parametrization of the curve is already available.
Otherwise, that polygon is sampled to obtain a new list of points such that the
distances between points adjacent on the list are all equal on the original polygon.
An evolved version F~ of F can then be computed. F~ is defined by [4]:

v . -~ (X(u, ~), Y(u , .))

where

x(~ , o) = x(~) | g(~, ~) Y(u, ~) = y(u) | g(~, o)

where | is the convolution operator and g(u, a) denotes a Gaussian of width a.
The process of generating evolved versions of F as a increases from 0 to ec is
referred to as the evolution of/7. This technique is suitable for removing noise
from a planar curve. Evolving contours can be considered an early form of active
contours (snakes) [1] since they are similar in behaviour to snakes without any
external constraints.

The CSS representation contains curvature zero-crossings or extrema ex-
tracted from evolved versions of the input curve. In order to find such points,
we need to compute curvature accurately and directly on an evolved ve r s ion /~
of a planar curve. It can be shown that curvature a on F~ is given by [5]:

~(u, a) = X~(u, a)Y,~(u, a) - X~,(u, a)Yu(u, a)
(x~(~, ~)2 + y~(~, ~)2)1.5

where

and

D
Xu(u, a) = ~ (x (~) | g(u, ~)) = x(u) | gu(U, ~

0 2
X~u(U, o) = b ~ (x(~) | g(~, o)) = x(~) | g~(u , ~)

Y~(u,~) = y(u) e gu(U,~) y ~ (~ , o) = y(~) | g~ (~ , ~).

The function defined implicitly by a(u, a) -- 0 is the CSS image o f / ' . Note that:

- The CSS image is stored as a binary image in which each row corresponds
to a specific value of a and each column to a specific value of u.

569

- A brute force computation of a CSS image can be inefficient. The method
usually used is to track the zero-crossings in the CSS image: at each scale
curvature is computed only in a small neighborhood of each location where
a zero-crossing was detected at the previous scale. This is possible since for
a small change in a, the change in location of any curvature zero-crossing
on the curve is also small.

- For all values of cr larger than a ac, evolved curves F~ will be simple and
convex. This suggests that the computation can stop as soon as ac is reached
or as soon as no more curvature zero-crossings are detected on F~ [7].

For examples of CSS images, see [5, 6].

4 M u l t i - S c a l e S e g m e n t a t i o n o f 2 - D C o n t o u r s

The basic idea behind the segmentation scheme is to divide the input contour
into primitive segments to be used by a local matching algorithm (described in
section 5). Curvature zero-crossing points are the natural feature points to divide
the contour since their locations are invariant with respect to rotation, scaling
and translation of the contour. The main issue, therefore, is the issue of scale:
which scale should be chosen for the detection of curvature zero-crossing points
on the input contour? If the scale chosen is too small, the segmentation may be
affected by noise and local distortions of shape, and if it is too large, important
structure on the contour may be lost.

The solution used here was motivated by the main underlying concept of
the curvature scale space representation: utilize information from multiple scales
rather than prefer a single scale. Therefore the segmentation of the input contour
is also carried out at nmltiple scales. The procedure is as follows:

- Start the segmentation at the lowest scale of the CSS image and end at a
medium scale since the segments discovered at high scales are not useful.

- Segment the contour using the curvature zero-crossing points detected at the
lowest scale and add all segments (defined by their left and right endpoints
expressed in arc-length values) to a segment-list. As each higher scale is
considered, again detect all curvature zero-crossing points at that scale but
add a new segment if it does not already exist in the segment-list.

Care must be taken to account for the movement of curvature zero-crossing
points in the CSS image. Therefore an auxiliary segment-list is also used which
always records the updated values (across scales) of the left and right endpoints
of each segment in the original segment-list. To check for existence, the auxiliary
segment-list is searched. When extracted segments are written to the output file,
the original segment-list is used since the segments in the auxiliary segment-
list become very small at the maximum of the corresponding CSS zero-crossing
contour. This multi-scMe segmentation scheme is substantially more robust with
respect to noise and local shape differences.

570

5 L o c a l M a t c h i n g t h r o u g h C u r v a t u r e S c a l e S p a c e

Due to occlusion, the matching algorithm employed is a local one and consists
of several stages. This section describes those stages in the sequence in which
they are carried out.

5.1 Rescaling

Model contours and the image contour are rescaled so that they just fit in a
unit square. The model contours are further rescaled so that they reflect the
relative sizes of model objects when viewed at the same distance. Model contour
rescaling is carried out off-line. As a result of image and model contour rescaling,
the possible scale changes from model contours to the image contour become
predictable which helps to define an admissible space for the scale-factors (In
principle, since the distance from the camera to the light-box is known, the scale-
factors are also known, but tha t information was not used here: the system is
therefore allowed to recover the correct scale-factors as a result of the recognition
process). The multi-scale segmentation procedure described in section 4 is then
used to segment the model contours and the image contour.

5.2 Candidate Generation and Filtering

Due to occlusion, all possible local matches must be considered (note however,
that very small segments on either the image contour or the model contours are
discarded). In order to avoid an exhaustive search of all model contour segments,
object indexing [9] is employed to render the initial search more efficient. After
segmentation, each model contour segment is rescaled so that each has the same
length /: (subject to constraints imposed by the admissible space defined in
the previous subsection). Average curvature is then computed for each of those
segments and used to create an index-table for all the model contour segments.
All the computation is carried out off-line.

Once the segmentation of the image contour is completed, each image contour
segment is also rescaled so that each has the same length s (again subject to con-
straints imposed by the admissible space). Average curvature is also computed
for each of those segments. The average curvatures now serve as indices into the
model contour segment index-table to recover a more likely (and smaller) set
of potentially matching model contour segments. A candidate is generated for
the possible match of each image contour segment and the corresponding model
contour segments recovered from the index-table.

Transformation parameter optimization is then applied (as described in sec-
tion 8) to the generated candidates in order to refine the initial estimate of
those parameters. This step is crucial since the accuracy of segment distance
calculation depends greatly on the accuracy o] the transformation parameters.
For each candidate, segment-dist is defined as the average point distance be-
tween the image-model contour segments (see section 7) and used as a measure
of the goodness of fit between the two segments. A number of candidates with
low segment-dist values are then selected for further processing.

571

5 . 3 C a n d i d a t e M e r g i n g

Initial candidates correspond to simple segments delimited by neighboring cur-
vature zero-crossing points. Nevertheless, it is possible for the visible boundary
of an object in the input image to be divided into several neighboring or even
overlapping segments. I t is therefore necessary to merge those initial candidates
which satisfy several criteria intended to measure candidate compatibility. I t fol-
lows tha t two candidates Cl and c2 will be merged if they satisfy the following
criteria:

- cl and c2 must be valid (not previously merged) and different candidates.
- c~ and e2 must correspond to the same model.
- The transformation parameters of Cl and c2 should be roughly the same.
- The corresponding segments of el and c2 must be neighboring or overlapping.
- The scale factor associated with the new candidate must be admissible.
- The new candidate must have a low segment-dist value.

When two candidates are merged, the corresponding segments will be the
union of the old segments. The old candidates are invalidated. Candidate merging
will continue until no two candidates can be found which satisfy the merging
criteria.

5.4 C a n d i d a t e E x t e n s i o n

In general, the intersection point of two object boundaries in the input image
does not coincide with an endpoint of a curvature zero-crossing segment. There-
fore in order to find the exact location of such intersection points, it is necessary
to gradually extend the contour segments associated with the merged candidates
as long as a good fit between the image and model segments can be observed.
Extension is first carried out at the right endpoint until mismatch error is too
large and then carried out at the left endpoint. It is assumed that in general,
object intersection points are a subset of the curvature max ima on the image
contour (this is true except in hypothetical situations). First, all curvature ex-
t r ema are located on a slightly smoothed version of the input image contour.
Then, the following procedure is applied at each endpoint of each candidate:

- Extend the image contour segment to the next curvature maximum.
- The corresponding model contour segment is extended accordingly.
- Determine new transformation parameters and the new vMue of segment-dist

for the candidate being extended.
- Determine the number of points k in a small neighborhood of the endpoint

which are far from the image contour.

Extension stops if either the new candidate no longer has a low segment-dist
value, or the new value of segment-dist rises sharply compared to previous value,
or k rises above an acceptable limit. When extension stops, tests are carried
out to detect a borderline case (k is just above the acceptable limit or value

572

of segment-dist is just above the cut-off threshold). If so, the current endpoint
becomes the final endpoint. Otherwise, the previous endpoint becomes the final
endpoint.

5.5 C a n d i d a t e G r o u p i n g

The next step in matching is to group compatible but disjoint candidates. The
tests applied to determine compatibility are the same as the tests in section 5.3
except that the fourth test is not applied. It is certainly possible that, due to
occlusion, an object in the scene may appear as two or more disjoint components
in the input image. The goal of this step is to identify such situations to aid in
the process of recognition.

5.6 C a n d i d a t e Se l ec t i on

What remains is to select the best candidates using an appropriate criterion. As
stated earlier the value of segment-dist for each candidate is the average point
distance between the contour segments associated with that candidate. This is
a suitable measure of how well the shapes of those contour segments match.
Another measure of the significance of a candidate is its support. Candidate
support is defined as the length of the image contour segment associated with
the candidate (note that if two disjoint candidates are found in section 5.5 to
be compatible, the support of each candidate is increased by the length of the
image contour segment associated with the other candidate). Define:

segmen t - dist
candidate-cost =

candidate- support"

Note that a candidate with a lower cost is a better candidate. The following
procedure is then used to select the best candidates:

- Determine the cost of each candidate.
- Select the valid candidate with the lowest cost.
- Disqualify all candidates whose corresponding image contour segment over-

laps with the image contour segment of the chosen candidate or the image
contour segment of any candidate compatible (see section 5.5) with the cho-
sen candidate.

- Find any image contour segments delimited by negative curvature minima
which do not overlap with the image contour segments associated with any
chosen candidates or candidates compatible with them, and which fit well
with the model associated with the chosen candidate. Examples are straight
line segments which do not occur in valid candidates.

- Disqualify all candidates whose corresponding image contour segment over-
laps with any of the image contour segments discovered in the previous step.

- Determine the final fit of the model associated with the chosen candidates
using all relevant image contour segments and map the model to the image
space.

573

- Disqualify the chosen candidate and all candidates compatible with it.
- If any valid candidates remain, go to the second step above, otherwise STOP.

Note tha t this procedure is independent of number of objects in input image.

6 S o l v i n g f o r t h e T r a n s f o r m a t i o n P a r a m e t e r s

When mapping a model curve segment to an image curve segment, it is possible
to obtain many pairs of points on those segments in order to compute an initial
approximation for the transformation parameters since the correspondence be-
tween arc length values on the curve segments is known. It is assumed tha t the
t ransformation to be solved for consists of uniform scaling, rotat ion and trans-
lation in x and y. Let A' = (xj,yj) be a set of rj points on the image curve and
let ~ = (~j,r be the set of corresponding points on the model curve. The
parameters of the following transformation:

xj = a~j + bCj + c yj = -b~j + aCj + d (1)

must be solved for. A Least-Squares Estimation method is used to est imate values
of a, b, c and d. Let the dissimilarity measure [2 which measures the difference
between the model curve segment and the image curve segment be defined by:

/2 = ~ (x~ - x~) ~ + (~ - ~;)~
j = l

where (~ , y~) is the closest point on the image curve to t ransformed model curve
t and t yields: point (x}, y}). Using equation (1) to eliminate xj yj

7]

/2 -- ~ (a~j + br + c - ~)~ + (-b~j + aCj + d - y;)~.
j - - 1

Let 7) = (a, b, e, d) be the vector defined by the t ransformation parameters . The
solution of o~ =_ 0 is the least-squares estimate of those parameters . To compute
tha t estimate, determine the partial derivatives o f /2 with respect to each of a,
b, c and d and set those partial derivatives to zero. The result is a linear system
of four equations in four unknowns which is solved to obtain est imates for a, b,

a

b =

e and d:
c 1 c 1

1 1
E ~ + E r - ~ ECJ E ~ J - ~ E C J E C J

�9 c 1 1

1 1

E z ~ - a E ~ j - bE~Pj
C ~

Eu~ + b E C j - a E ~ p j
d =

574

7 M e a s u r i n g I m a g e - M o d e l C u r v e D i s t a n c e s

Once an estimate of the transformation parameters is available, it is possible
to map the model curve to the space of the image curve. It is then useful to
measure the image-model curve segment distance for two reasons:

- Different model curves are mapped to the image curve in order to determine
which model curve is locally closest to the image curve. This is accomplished
by measuring image-model curve segment distances.

- The computation of the image-model curve segment distance is essential to
transformation parameter optimization as described in section 8.

The image-model curve segment distance is computed by determining the
closest point on the image curve segment (not necessarily a vertex) to each
vertex of the model curve segment, and averaging the corresponding distances.

8 O p t i m i z i n g t h e T r a n s f o r m a t i o n P a r a m e t e r s

The least-squares estimate of the transformation parameters computed in sec-
tion 6 is, in general, not the optimal estimate. This is because the image-model
point correspondences are not precise due to noise and local shape distortions.
Nevertheless, it is possible to optimize those parameters as following:

- Let Dp = cr
- Compute the least-squares estimate of the parameters using the technique

described in section 6 and use it to map the model curve to the image curve.
- Determine a new set of corresponding points on the image curve as described

in section 7 and compute the new image-model curve distance Dn.
- If Dp - Dn < ~, then STOP.
- Let Dp = Dn and go to the second step above.

In this system, it was possible to compute the optimal parameters with less
than 1% error using at most 10 iterations of the procedure described above.

9 R e s u l t s a n d D i s c u s s i o n

A total of 15 model objects and seven input images were used to evaluate the
object recognition system described in this paper. Three of those images and
the system's corresponding output are shown in this section. The model objects
are as following: bottle, clip,]ork, key, monkey wrench (two model contours were
used), panda, two connector cases, screw-driver, scissors, spoon, vase, wire-cutter
and two regular wrenches (two model contours were used for each). Therefore a
total of 18 model contours were used. Each model contour was acquired off-line
by either manually reading and entering the coordinates of points on the contour
or obtaining an image of the isolated model object, segmenting the image and

575

recovering the contour. Each model contour was represented by 200 points. The
segmentation of each model contour was also computed off-line. The exact same
starting scale and final scale were used to compute the segmentation of each
model contour. About 10-20 segments were extracted from each model contour.

Due to the light-box setup used, the images obtained had high contrast.
As a result, thresholding followed by preprocessing was successful in properly
segmenting each of the input images after which the bounding contours were
recovered. Figure 9.1 shows three input images and the contours recovered from
those. The left column shows the original input images, and the right column
shows only the outermost contours recovered from those images after thresh-
olding, processing and boundary detection (see section 2). Note that only the
outermost contours were used by the system to arrive at recognition results even
though the inner contours are visually significant to human viewers. This was
done to demonstrate the recognition power of the system. Each image contour
was represented by 300 points. The exact same starting scale and final scale were
used to compute the segmentation of each image contour. About 20-40 segments
were extracted from each image contour.

The input images depicted scenes of varying complexity. The scene depicted
in the top row of figure 9.1 contains 4 objects and can be considered to be
of medium complexity. The scenes depicted in the middle and bot tom rows of
figure 9.1 contain 6 and 8 objects respectively and can be considered difficult.
The system was tested on each of the three inputs. Each of the objects in each
input image was recognized correctly by the system which also determined the
correct scale, location and pose of each object. Note that none of the internal
parameters of the program were modified from one run to the next: the exact
same system produced the correct result for each input image.

The system was implemented in C and ran on a SiliconGraphics Crimson
workstation. Execution times of 3.9 seconds, 12.0 seconds, and 13.1 seconds
were obtained for the top, middle and bot tom scenes of figure 9.1 respectively.
These execution times indicate that the system is very fast given the complexity
of the tasks it must perform. The left column in figure 9.2 shows the recognition
results reached by the system for the 3 input images. Note that in each sub-figure
the model contours are shown using a thin line and the image contour is shown
using a thick line. The system was very robust in each case despite the presence
of noise and local deformations of shape due to segmentation errors, non-rigid
material in some objects, and perspective projection. Note that the right column
in figure 9.2 also shows the segmentation points discovered during recognition.
In almost all cases, the system was able to determine exact locations of those
points.

10 C o n c l u s i o n s

This paper presented a complete and practical system for object recognition with
occlusion which is very robust with respect to noise and local deformations of
shape (due to perspective projection, segmentation errors and material of a non-

576

Figure 9.1. Input images and recovered contours

577

Figure 9.2. Recogni t ion results for input scenes

578

rigid nature) as well as scale, position and orientation changes of the objects.
The system was tested on a wide variety of 3-D objects with different shapes
and surface properties. A light-box setup was used to obtain silhouette images
which are segmented to obtain object boundaries. The Curvature Scale Space
technique was then used to obtain a multi-scale segmentation of the image con-
tour and the model contours using curvature zero-crossing points. This method
made the system robust with respect to noise and local shape differences. A local
matching algorithm applied candidate generation, selection, merging, extension
and grouping to select the best matching models. Efficient t ransformation pa-
rameter optimization is used to map candidate models to the image space and
directly measure the model-data quality of match. I t is also used to compute the
optimal pose for each selected model.

Acknowledgments

This work was supported by the N T T Basic Research Laboratories, Tokyo, the
Labora tory for Computat ional Intelligence at the University of British Columbia,
Vancouver, and the Vision, Speech, and Signal Processing Laboratory at the
University of Surrey, England.

References

1. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In Proc
International Conference on Computer Vision, pages 259-268, 1987.

2. F. Mokhtarian. Fingerprint theorems for curvature and torsion zero-crossings. In
Proc IEEE Conference on Computer Vision and Pattern Recognition, pages 269-
275, San Diego, CA, 1989.

3. F. Mokhtaxian. Silhouette-based isolated object recognition through curvature
scale space. IEEE Trans Pattern Analysis and Machine Intelligence, 17(5), 1995.

4. F. Mokhtarian and A. K. Mackworth. Scale-based description and recognition of
planar curves and two-dimensional shapes. IEEE Trans Pattern Analysis and
Machine Intelligence, 8(1):34-43, 1986.

5. F. Mokhtarian and A. K. Mackworth. A theory of multi-scale, curvature-based
shape representation for planar curves. IEEE Trans Pattern Analysis and Machine
Intelligence, 14(8):789-805, 1992.

6. F. Mokhtarian and H. Murase. Silhouette-based object recognition through cur-
vature scale space. In Proc International Conference on Computer Vision, pages
269-274, Berlin, 1993.

7. F. Mokhtarian and S. Naito. Scale properties of curvature and torsion zero-
crossings. In Proc Asian Conference on Computer Vision, pages 303-308, Osaka,
Japan, 1993.

8, C. A. Rothwell, D. A. Forsyth, A. Zisserman, and J. L. Mundy. Extracting projec-
tive structure from single perspective views of 3d point sets. In Proc International
Conference on Computer Vision, Berlin, 1993.

9. F. Stein and G. Medioni. Structural indexing: Efficient 3-d object recognition.
IEEE Trans Pattern Analysis and Machine Intelligence, 14:125-145, 1992.

10. A. P. Witkin. Scale space filtering. In Proc International Joint Conference on
Artificial Intelligence, pages 1019-1023, Karlsruhe, Germany, 1983.

