Database Program Mapping
onto a Shared-Nothing Multiprocessor Architecture:
Minimizing Communication Costs

Sophie Bonneau, Abdelkader Hameurlain

Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier
118, route de Narbonne, 31062 Toulouse cedex, France
E-mail: {bonneau, hameur} @irit.fr

Abstract. This paper deals with the minimization of inter-task and inter-proces-
sor communication costs in the context of one SQL query mapping onto a shared-
nothing architecture, as far as the parallel decisional query processing is con-
cerned. After setting both the models of the application handled and the target
multiprocessor architecture, a study aimed at minimizing both inter-processor
transfer times depending on the interconnection network topology, and the im-
pact of pipeline starting/closing (start-up) times, is mainly presented.

1 Introduction

In the context of the compilation of a database program on a parallel architecture, the
present paper focusses on the particular problem of mapping tasks making up a SQL
query onto shared-nothing parallel architecture processors.

The mapping problem, generally as well as for many special cases known to be NP-
complete, has been intensively studied within the database community, further to par-
allel DBMS development, for these last few years {7, 8, 10]: typically, the double opti-
mization criterion of the proposed resolution methods (such is also our case) is the
response time (or makespan as well) minimization and the system throughput maximi-
zation, and the allocation constraint, processor load partitioning or balancing.

Nevertheless, these heuristics are all distinguished by not taking into account com-
munication costs, indeed estimated on the basis of inter-processor and inter-task com-
munication times, inherent in the target parallel architecture specificity and the
application type features, while these contribute to the increase in the response time [2]:
first, a shared-nothing parallel system may be characterized by a sizeable inter-proces-
sor communication cost overhead, and second, the considerable communication (data
and control) volume exchanges of the decisional SQL query bound tasks generate sig-
nificant inter-task communication cost. On the one hand, inter-task communication
times can be improved by reducing communication volume: at the mapping level, it has
been achieved by introducing allocation constraints which facilitate propagating the
number of processors and partitioning attributes {3] to avoid data redistributing whose
cost may significantly exceed a task execution cost, and force mapping of the tasks in
charge of reading data from disk, at the very place where data they use are stored. How-
ever, on the other hand, inter-processor communication times depend on both the target

1155

multiprocessor architecture interconnection network topology, and the available differ-
ent parallelism (partitioned and pipeline) types taken into account in the application
mapping process.

This is the reason why the problem of inter-processor communication cost minimiza-
tion is here particularly focussed on, within the context of one SQL query static map-
ping onto a shared-nothing parallel architecture [5]. In Section 2, a model for the
application to be mapped and the target parallel system, are described. In Section 3, our
study of inter-processor communication cost optimization is summed up, as well as its
consequences on the mapping process to be designed. Finally, Section 4 concludes with
a synthesis of the work achieved and an overview of future related prospects.

2 Problem Modelization

The application to be mapped is a decisional SQL query dependence graph [9]: this is
an oriented graph whose nodes represent tasks (i.¢. Scani, Buildi and Probeil), and edg-
es, information (data and control messages) communication and/or time-related de-
pendence links. The communication link between two tasks I and J is either of the
“precedence” or of the “pipeline” type: in the former case, J will be executed and will
receive information from I only when I has completed its execution, whereas, in the lat-
ter case, I and J exchange data flow in a producer-consumer manner. Only tasks Buildi
and Probei are constrained by a precedence type communication. In addition, this graph
is valuated by each task local response time, each task couple communication cost (see
Section 3), and the number of processors required to execute each task, which is esti-
mated by the cost evaluator [4]. The communication mode of each bound task couple is
also known (i.e. broadcast, distribution or propagation).

The target shared-nothing parallel architecture is characterized by the number of its
processors, and its interconnection network topology (i.e. point-to-point, multi-stage or
fully connected). It is to be noted that communications, depending on the network to-
pology and the required data partitioning on each memory space, may generate a size-
able parallelism overhead.

3 Inter-processor Communication Cost Minimization
3.1 Inter-processor Communication Time Definition and Minimization Approach

Nowadays, trying to minimize inter-processor communication times on shared-nothing
parallel architecture, still seems to be relevant. Multi-stage or fully connected type net-
works have, indeed, uniform communication times unlike point-to-point networks, and
new technologies (i.e. optic fibre, co-axial cable support) cannot account for a minimal
Communication Time/CPU Time ratio yet, for the number of MIPS has not improved
in the same proportion as commmunication latency and rate have decreased.
Generally, the inter-processor communication time between two processors refers to

1. i.e. tasks respectively reading tuples from disk, building and probing the hash
table of a simple-hash join node.

1156

T,

Ci
time between two processors, and Ty, the information receiving/sending (start-up)

omm = Ttransfer + Tstart-up Where Tiransser is the information (data and control) transfer

CPU time overhead. On the one hand, in order to minimize the former component while
mapping, when a point-to-point topology is at stake, “bringing nearer” emitter and re-
ceiver processors involved in communication can be attempted by using a distance ma-
trix. On the other hand, as the latter component can prevail in target parallel system
enabling pipeline parallelism to be exploited (such is our case), and because our appli-
cation data are transferred in flow, minimizing of pipeline start-up time impact is essen-
tial, and based on the following observation: as a rule, in order to maximize pipeline
potential chains, it is attempted to allocate two different processor sets to each pipeline
communicating task couple. Well, the communication cost (estimated from data com-
munication volume) between two of these tasks can sometimes exceed their execution
cost (based on local response time) because some tasks such as Scan, Join, Grouping,
don’t always handle all the data received [2]. In this case, if only one processor is sup-
posed to be allocated to each task, it is to be noted that the pipelined task couple re-
sponse time mapped onto two different processors, is less than the pipelined task couple
response time mapped onto the same processor, only if the communication cost is rela-
tively less than the task local response times. As a consequence, taking into account par-
titioned parallelism (i.e. assigning several processors to each task) sets the question of
whether it is always relevant to systematically allocate two different processor sets to
pipelined tasks. Our resolution method consists, for each pipelined task couple, in ana-
lyzing associated costs to determine whether it should be better, in terms of mapped task
couple response time, to allocate onto the same processor set or onto two different proc-
€8SOor sets.

3.2 Resolution Method Mainspring

Let two tasks I and J, with respective local response times #;>0 and >0, and pipeline
communication cost C; ;>0, which respectively require n;>1 and n;>1 processors. De-
pending on the inter-task communication mode and the number of processors assigned
to each of them, the following cases can be distinguished:
st case (see Figure 1):

* n; = n; (for instance, I and J are both assigned 2 processors.)

* communication mode: propagation
2nd case (see Figure 2):

* 0 # 15 (for instance, I and T are respectively assigned 2 and 3 processors.)

* communication mode: distribution or broadcast
Our method consists in attempting to formally evaluate this task couple response time
for each of the mapping configurations [1], under the following assumptions: i/ The
couple tasks to be mapped will be scheduled in a balanced and symmetric way [6], ii/
all processors are identical.

3.3 Formal Study Consequences and Interpretation

The following conclusions can be drawn from the response time study of a task couple

1157

@ @) @I /
proc. 1 proc. 2 proc.1 proc.2 proc.3 proc.4
I and J on the same I and J on two different
processor set Processor sets

Fig. 1. Possible mapping configurations of pipelined tasks propagating

©

proc. 1 proc. 2 ' proc. 3 proc.1 proc.2 proc.3 proc.4 proc.5
I 'and J on the same I and J on two different
processor set processor sets

Fig. 2. Possible mapping configurations of pipelined tasks distributing or broadcasting

in each mapping configuration, depending on communication mode, towards the appli-
cation dependence graph:

i/ tasks distributing or broadcasting (e.g. Scani—Buildj, Scani—Probej and
Probei—Build; if the number of processors and partitioning attributes were not propa-
gated), should always be mapped onto two different processor sets, to exploit pipeline
parallelism. In this case, it can, indeed, be proved that the response time of the task cou-
ple mapped onto two different processor sets will always be less than the response time
of the task couple mapped onto the same processor set, whatever the communication
cost (start-up) significance with regard to task execution costs [1].

ii/ tasks propagating (e.g. Probei—Buildj if the number of processors and partitioning
attributes were propagated), should be mapped onto two different processor sets, to fa-
vour pipeline parallelism, when the communication cost is relatively less than the task
execution cost. On the contrary, multi-programming execution would better be fa-
voured by mapping tasks onto the same processor set. Decision relativity can be settled
by the following fast calculation:

let R = max(t;, tj) -t + tj) (negative by definition for t;, t > 0
1st case. C; ;> IRI: the communication cost will compensate saving due to pipeline par-

allelism, i.e. the communication cost will inhibit saving due to pipeline execution.
Therefore, task multi-programming execution would better be favoured by mapping
onto the same processor set.
2nd case. C; ;< IRI: saving due to multi-programming execution is compensated by the
communication cost. Pipeline execution would better be favoured by mapping tasks
onto two different processor sets.

It is to be noted that the pipeline communication format Probei—Probej is not delib-

erately considered in this work: the data localization allocation constraint [S] binds

1158

Probei (resp. Probej) mapping to be Buildi (resp. Buildj) one. So, the mapping clue for
such a task couple will a priori be physical allocation onto two different processor sets.

4 Conclusion

This paper has focussed on the problem of minimization of inter-task and, more partic-
ularly, inter-processor communication costs, which contributes to the optimization cri-
terion minimization (i.e. response time) of one SQL query mapping onto shared-
nothing parallel architecture. After describing a problem modelization, this study and
an adequate resolution method have been presented.

So it has been emphazised that the mapping process could mainly act on the inter-
processor communication cost by attempting to:

i/ minimize inter-processor transfer time for point-to-point networks, by choosing
to allocate sets of processors which are nearer each other to communicating tasks,
thanks to a distance matrix,

ii/ minimize pipeline communication start-up time impact, by working particularly
on dependence graph pipeline communications. For each pipelined task couple, this
handling determines whether it would be better, in terms of mapped task couple re-
sponse time and depending on the communication mode, to allocate onto the same proc-
essor set or onto two different processor sets.

Finally, the next goal is to integrate these results into the PSA (Parallel Scheduling
Algorithm) scheduling and simultaneous mapping algorithm [5].

References

1. BONNEAL, S. et al., “Placement d’un programme bases de données sur une architecture
multiprocesseur & mémoire distribuée: minimisation des coits de communication”, Rap-
port de Recherche, No. IRIT/97-08-R, Lab. IRIT, Janvier 1997, 23 pages.

2. ENGLERT, S., et al., “Parallelism and its price: a case study of NonStop SQL/MP”, Sig-
mod Record, vol. 24, n°4, Dec. 1995, pp. 61-71.

3. HAMEURLAIN, A, et al., " An Optimization Method of Data Communication and Con-
trol for Parallel Execution of SQL Queries ", Intl. Conf. on Database and Expert Systems
Applications, LNCS, n°720, Prague, Sept. 6-9, 1993, pp. 301-312.

4. HAMEURLAIN, A, et al.," A Cost Evaluator for Parallel Database Systems ", 6th Intl.
Conf. on Database and Expert Systems Applications, DEXA'95, London, 4-8 Sept. 1995,
LNCS, n°978, pp. 146-156.

5. HAMEURLAIN, A., et al., "Scheduling and Mapping for Parallel Execution of Extended
SQL Queries"”, 4th Intl. Conf. on Information and Knowledge Management, ACM Press,
Baltimore, Maryland, 28 Nov. - 2 Dec. 1995, pp. 197-204.

6. HASAN, W., “Optimization of SQL queries for parallel machines”, dissertation fot the de-
gree of Doctor of Philosophy, Stanford University, Dec. 1995.

7. LO, Y.L, et al., “Scheduling queries for parallel execution on multicomputer DataBase
Management System”, 7th Intl. Conf. on Database and Expert Systems Applications,
DEXA'96, Zurich, Sept. 1996, LNCS, n°1134, pp. 698-707.

8. MAHIOUT, A,, et al., “Modéliser les dépendances entre les tiches data-paralleles pour le
placement et I’ordonnancement automatique”, 6i¢mes Rencontres Francophones du paral-
1élisme, Lyon, Juin 1994, pp. 37-40.

9. SCHNEIDER, D., et al.,“Tradeoffs in Processing Complex Join Queries via Hashing in
Multiprocessor Database Machines”, Proc. of the 16th VLDB Conf., Brisbane, Australia
1990, pp. 469-480.

10. WOLF, J. L., et al., “A Hierarchical Approach to Parallel Multiquery Scheduling”, IEEE
Transactions on Parallel and Distributed Systems, 1995, vol. 6, n°6, pp. 578-589.

