
Skeletons for Data Parallelism in p31

Marco Danelutto, Fabrizio Pasqualetti , Susanna Pelagatt i *

Dipartimento di Informatica, Corso Italia, 40 PISA Italy

Abs t r ac t . This paper addresses the application of a skeleton/template
compiling strategy to structured data parallel computations. In partic-
ular, we discuss how data parallelism is expressed and implemented in
p31, a structured parallel language based on skeletons. In the paper, we
describe the new set of p31 data parallel skeletons, outline the implemen-
tation templates used to compile data parallel computations, and discuss
the template based compiling process and the optimizations that can be
carried on. Finally, we give some preliminary implementation results.

1 I n t r o d u c t i o n

In the past years, a growing interest has arisen for restricted parallel computa-
tional models, that is models in which parallel computat ions must be of certain
limited forms [12]. Restricted models are appealing as most of the problems to
be solved when implementing a parallel application, such as it is efficient, are in-
t ractable if the application is of arbi t rary form [4, 11]. Encouraging results have
been derived for restricted models, and in particular for skeleton based models,
in which parallel computat ion must be expressed as instances of a fixed set of
pat terns (the skeletons) possibly nested [7, 4, 11].

In our previous work, we proposed a structured parallel language, p31, based
on skeletons [5, 1] and we discussed an implementat ion s t rategy able to take
advantage of the limitations imposed on the parallel program structure. This
s trategy is based on a library of implementation templates. An implementat ion
template is a parameterized network of processes implementing all the instances
of a given skeleton onto a given target parallel architecture. The network is
associated to an analytic performance model able to predict the performance
of a network instance on the basis of user defined code and architectural costs.
The implementat ion of a p31 program is built by the compiler by composing
templates in the library according to the skeleton nesting specified by the user.
Performance models are consulted to assign resources to each template instance
and to tune program structure in an optimal way.

p31 includes task parallel skeletons and data parallel skeletons. Task parallel
skeletons abst ract common forms of parallelism used in the computat ion of un-
related tasks, such as pipeline computat ions or task farm computations. Da ta

* We would like to thank the IFPC at the Imperial College in London for the access
to the Fujitsu AP1000 machine and the assistance given. Fabrizio Pasqualetti was
supported by a grant from the CPR Pisa. The research has been partially supported
by the Italian MURST.

620

parallel skeletons abstract common patterns of parallelism used when computing
in parallel parts of the same task. In [5, 1], we focused on task parallel skeletons
and proposed some simple, non nestable data parallel skeletons (map, reduce
and geometric). Moreover, the geometric skeleton modeled data parallel com-
putations involving arbitrary data exchanges between sub tasks. It was a sort of
'escape' skeleton, in which a programmer could express in a non restricted way
data parallel computations not expressible by map and reduce. This lead to prob-
lems designing an optimized template for this construct as it incurred the same
intractable problems encountered for efficient implementation of non-restricted,
universal, models.

In this paper, we describe the result of our work in redesigning the skeletons,
the implementation templates and the compiler strategies dealing with the data
parallel part of p31.

2 D a t a p a r a l l e l p31 s k e l e t o n s

p3] is a structured parallel language in that it provides the programmer with a set
of primitive skeletons (the parallel constructs) that can be nested to build com-
plex parallel structures [5, 1]. p31 is built around a host sequential programming
language (the host language) from which it borrows concrete types implement-
ing the p31 data types, identifiers and "functions" which are sequential portions
of code describing a function f to be computed on a single input datum by an
instance of a sequential construct. Currently, p31 uses C as the host language [1].
Skeletons included in p31 are the following: the sequent ial skeleton defining
a sequential module computing a function f on a stream of input values; the
farm skeleton defining a pool of worker modules, each one able to compute a
given function f; the pipeline skeleton defining a parallel module composed
of a sequence of stages in cascade; the loop skeleton allowing the execution of
a p31 module to be iterated and the da ta parallel skeletons.

Data parallel skeletons abstract typical patterns of data parallel computation.
They identify a small set of data parallel patterns that can be composed to build
more complex structures in the spirit of the skeleton methodology. There are
three skeletons currently available: the map skeleton modeling independent data
parallel computation over arrays, the reduce skeleton exploiting parallelism in
the reduction of array elements using an associative and commutative binary
operator and the comp skeleton allowing different independent phases of a data
parallel computation to be composed. All three skeletons can be freely nested.

The map skeleton models independent data parallel computations on array
elements. It defines a set of "virtual processors" organized as an n dimensional
array and models a data parallel computation in three phases: distribution and
partition of data to the virtual processors (distribution phase), independent vir-
tual processor computation (computation phase) and collection of results (col-
lection phase). A generic map instance is of the form
map mod-name in(in-list) out (out-list)

body in(body-in-list) out (body-out-list)
end map

621

where map and end map are p31 delimiters, rood-name is the name of the map in-
stance, i n - l i s t (ou t - l i s t) defines types and the names of the input (output)
d a t a , body is the name of the module defining the computation to be performed
by each virtual processor, body- in - l i s t defines how an input datum is parti-
tioned among the virtual processors, and body-ou t - l i s t defines how the virtual
processor results are collected to build the array(s) in output. As an example,
consider the following map instance

map foo in(int a[n] [m], int b[n], int c[n] [m]) out(int d[n] [m])
body in(a[*i][*j], b[], c[][*j], *j) out(d[*i][*j])

end map

Variables prefixed by * (*i and *j) are called free variables and define the virtual
processors and the data partition. Virtual processors are defined by the free
variables in the body output list, in the example above we have n × m virtual
processors. Virtual processor (i, j) computes the array element d[i] [j] .

(a) (c)

iiii/.iiiii/iiii.~I~iiiiiiiiiiii;

(b) s

: i

a [n] [n] b [n] [n]

r

s

iiiiiiii[]iiiiii

c[n] In]

Fig. 1. Different overlapping multicast: a column slice of a (a); a square slice of b (b)
and a group of columns of c (c).

Distribution operations are defined by the position of the free variables in
the body in-list. In practice, if a free variable *j appears within an array refer-
ence, all the virtual processors for which *j has value k will receive the array
element for which *j has value k. For instance, in the example above a[*i] [*j]
scatters the array a distributing a[i] [j] to virtual processor (i , j) ; b is broad-
casted to all the virtual processors as no free variable appears in it; and, c [] [*j]
specifies a multicast operation where all the virtual processors (1 , i) . . . (n, i)
get the ith column of c (c [] [i]) . More complex multicast operations can be
expressed in a map instance by using constant expressions involving free vari-
ables. For instance, a [* i -k l .. *i+k2] [*j] specifies that each virtual proces-
sor (r ,s) gets a [r - k l] [s] . . . a [r + k 2] [s] (Fig. la); b [* i - k l . . * i+k2] [* j - k l . .
*j+k2] specifies for each (r, s) a rectangular slice centred on a[r] [s] (Fig. lb);
and, c [] [*j-kl .. *j+k2] specifies a slice of kl + k2 + 1 columns (Fig. lc).

The r e d u c e s k e l e t o n models the "reduction" of an array by means of a
binary associative and commutative operator. A reduce instance specifies the
dimensions of the array to be reduced and the p31 module specifying the binary
associative operator to be applied. For example, the following reduce instance

622

logic_or in(bool a,b) out(bool c) ${ c = a I] b; }$ end
step in(bool s ten[3] [3] , in t i , in t j) out(bool z, changed) ${ . . .}$ end

map l i f e _ s t e p in~bool a[n] [n]) out(bool b[n] [n], bool ch[n] [n])
s tep i n (a [* i - l . . * i + l] [* j - 1 . . * j + l] , *i , *j) o u t (b [* i] [* j] , c h [* i] [* j])

end map

reduce is l ife_moving in(bool ch[n][n]) out(bool cond)
logic or in(ch[*] [*]) out(cond)

end reduce
comp game step in(bool a[n] [n]) out(bool b[n] [n], bool cond)

l i f e s tep in(a) out(b, bool c[n][n])
is l i f e moving in(c) out(cond)

end comp
loop game o f _ l i f e in(bool a[n][n]) out(bool b[n][n]) feedback(a=b)

game_step in(a) out(b, bool cond)
un t i l not (cond)
end loop

Fig. 2. Definition of a data parallel module computing the game of life.

reduce red_f_O in (i n t x[lO]) ou t (in t y)
f in(x[*]) out(y)

end reduce

specifies the reduction of all the elements in a vector x (x [*]) by an operator
defined by the f module.

The c o m p s k e l e t o n allows data parallel modules to be composed. A comp
instance specifies a list of calls to the da ta parallel phases to be executed in
sequence. Among the rest, comp can be used to compose a map and a r e d u c e
instance, to model the well known Map&Reduce paradigm of parallelism [2].

3 An example

We illustrate the characteristics of the da ta parallel par t of p31 with a simple
example. Consider the problem of computing the classical game of life exploiting
data parallelism in the update of each pixel. The world is modeled with a matr ix
of boolean values a[n] [n]. Each a[i] [j] is t rue if the corresponding world cell
is alive and f a l s e if it is dead. Each world cell a [i] [j] is updated according
to the value of the neighbor 8 cells until a stable configuration is reached. All
cells can be updated in parallel. Figure 2 sketches the corresponding p31 pro-
gram. logic_or is a sequential module implementing the logic or: operator, s tep
is the sequential module implementing the update of a single cell in terms of its
neighbors (recorded in the array sten). A single parallel update step is defined
by the modules l i fe_s tep and is_life_moving. Finally, the single update step is
i terated using the game_of_life instance of the loop construct. At the beginning,
the world matr ix a is distributed to all the virtual processors with a multicast

623

operation giving the 8 neighbors to each one. Then, each virtual processor (i, j)
computes the update of the world cell a[i] [j] and sets ch[i] [j] to true if a
change has occurred in the cell state. The vector ch is then reduced with the
logic OR operator to understand if at least one of the cells has changed. If no
change has occurred, the configuration reached is stable and the computation
terminates. This is stated by the unt i l clause of the loop testing the logical or of
all the ch [i] [j]. In case a change has occurred, the virtual processors cooperate
to gather the new neighbor values and a new iteration is computed.

4 Template based compilation of p31

The p31 compiler is a template-based compiler [1, 11]. For each skeleton, an
implementation template is defined which implements in a parametric way all the
instances of that skeleton. An implementation template is composed of two parts:
a parametric process graph and a performance model. The performance model
allows the prediction of the performance of a given process network instance with
a given amount of resources. All the templates are stored in libraries, which are
consulted by the p31 compiler to build the implementation of a given program as
an optimized composition of templates in the library. The compiler extensively
uses the performance models related to each template to guide the optimization
process and to decide the amount of resources to be assigned to each template.
The p31 compiler is organized in three parts: front-end, middle-end and back-end.

The front end parses the source code, check types and produces the internal
representation of a p31 program (the construct tree). The middle end processes
the information contained in the construct tree. The tree is modified and anno-
tated until a suitable optimized composition of the templates in the libraries is
reached. The middle end produces an abstract representation of the final process
graph implementing the program on the target architecture (the abstract process
graph). In particular, the middle end analyzes the data parallel subtrees in order
to generate an optimized instance of the data parallel templates. A data parallel
subtree is a subtree including only instances of data parallel constructs, possibly
iterated. The back end takes in input the abstract process graph and gener-
ates the actual code for the target machine. This is carried out by using canned
process templates included in the process template library. More details on the
general structure of the p31 compiler can be found in [1]. In the following two
sections, we describe an optimized data parallel template (See. 4.1) and the al-
gorithm used within the p31 compiler to choose the optimized template instance
for a given data parallel subtree (See. 4.2). The template is defined according to
a simple message passing model, which abstracts a distributed memory MIMD
machine with nodes equipped with communication processors (such as commer-
cially available machines like Cray T3D/T3E, Fujitsu AP1000, Meiko CS2).

4.1 A t empla te for data parallel c o m p u t a t i o n s

The process network of the data parallel template is composed of p worker pro-
cesses each one emulating a subset of virtual processors (the VP-set). We assume

624

broadcast(wO,x)
scatter(wO,x,distr)
multicast(wO,x,distr)
stencil-gather(x, y, stencil)

gather(x , wO)
gather-broadcas t (x , wO)
g a t h e r - s c a t t e r (w 0 , x , d i s t r)
reduce(opn, x, x l , w0)
reduce-broadcast(opn,x,xl ,w0)
ca l l proc in (va r l) out(var2)

broadcasts x from worker w0 to all the others;
scatters x from w0 with scattering strategy d i s t r
multicasts x from w0 with multicast strategy d i s t r ;
gathers some of the elements of x in y
according to the pattern s tenci l ;
gathers all the results produced in the array x in w0
gathers x on w0 and then broadcasts it
gathers x on w0 and scatters it according to d is t r ;
reduces x using opn and puts the result in xl on w0
reduces x on w0 and then broadcasts it
calls the sequential procedure proc on each virtual
processor with input var l and output var2

Table 1, Collective operations in the data parallel template

tha t there is only one process (the root process) interacting with the external en-
vironment to get the input s t ream and to produce the output stream. Processes
in the template are able to execute a set of elementary collective operations each
one implementing a simple step of a da ta parallel computat ion. The collective
operations available are shown in Table 1.

An i n s t a n c e of the data-parallel template is obtained by fixing a number
of workers, fixing the VP-set to be emulated by each worker and fixing a se-
quence of collective elementary operations to be executed. The workers follow
an SPMD pat tern of computat ion executing the collective operations in order
and terminate at the end of the operation sequence. A p31 da ta parallel sub-
tree is implemented using a suitable sequence of collective operations chosen by
the compiler. The number of workers to be included (as well as the distribution
strategy for the virtual processors) is chosen by the compiler using a perfor-
mance model predicting the overall template performance. For instance, the
map l i fe_s tep in Figure 2 can be implemented by an instance of the template
with n 2 workers, each one emulating a single virtual processor, and executing
the following collective steps

1. a s c a t t e r (a , r o o t , [*i] [*j]) operation to distribute each a[i] [j] to the worker
emulating virtual processor (i, j) ;

2. s t e n c i l - g a t h e r (a, a, [-1 . . +1] [-1 . . +1]) to read the neighbor values;
3. c a l l s tep in(a) out (b, c) to call the code implementing a virtual processor;
4. ga ther (b , roo t) to gather the results in the root node.

The collective operations in Table 1 are quite s tandard a set of primitives, and
similar ones are included in many parallel libraries (such as CVL [3]) and in the
emerging MPI s tandard [10]. However, our operations are supplied with analytical
performance models tha t can be combined to obtain the expected performance
of a template instance onto a given machine. The cost of a given da ta parallel

625

template instance will be then derived combining the costs of the collective
operations used in the instance.

In our prototype implementation, we have developed a library of collective
operations written in C plus MPI on a Fujitsu AP1000 [9]. The complete models
can be found in [6]. The cost of a communication among two processes is given
by the sum of a startup time t8 accounting for the overhead of starting up a send
operation, a receive time tr accounting for the overhead of receiving a message
and a per-byte transmission cost tl which is the time required to send one byte
once the communication has been started. A performance model for a template
instance is derived combining performance models for different template steps
and instantiating all the parameters according to the case at hand.

The scheduling strategy of virtual processors to the workers is static and
is decided by the compiler on the basis of the estimated variance of worker
computation among the usual block and cyclic strategies [8]. The compiler goal
is to optimize the sequence of collective operations and to choose the number
p of workers and the distribution in order to optimize the response time of the
module and obtain the best resource allocation.

4.2 C o m p i l a t i o n o f d a t a - p a r a l l e l s u b t r e e s

Each instance of a data parallel construct is compiled using a suitable sequence
of operations. Generally, the behaviour of the resulting SPMD program is as
follows. First, the root process cooperates with the workers to distribute a new
input datum to be computed; then, all the processes execute a sequence of col-
lective operations; and, finally, the result of the computation is collected in the
root process to be output.

The generation of the sequence of collective operations for a given data-
parallel subtree goes through three steps: First, a virtual processor allocation
strategy is fixed and each module in the data-parallel subtree is expanded in a
sequence of collective operations. Then, the resulting global sequence of opera-
tions is optimized consulting the operation cost models to minimize communica-
tions and data movement. Finally, the performance model is consulted to choose
the best number p of workers

The data parallel p31 skeletons translation is rather straightforward. For in-
stance, sequential modules are translated using a suitable ca l l operation and
map modules are translated in a sequence of distribution collective operations,
followed by a sequence of operations implementing the body module and ended
by some gather operations to collect the arrays of results.

As an example, consider the game of life program in Figure 2. Analyzing the
program, we find out that the virtual processor set is a two dimensional array
n × n. The computational effort is expected to be uniform, while interaction
among neighbor processors is needed, thus a (block, block) distribution of the
virtual processors is chosen by the support. The result of the first translation
step is the following.

626

/* variable declarations and initialization */
i. repeat {
2. scatter(root, a, [*i] [*j]) /* map life_step */
3. stencil_gather (a,a, [*i-l] [*i+l])
4. call Simple_step in(a) out(b,cond)
5. gather(b, root)
6. gather (cond, root)
7. scatter(root, cond, [*i3 [*j]) /* reduce is_life ...*/
8. reduce (Logic_or, cond, c, root)
9. broadcast(root, c)
I0. call Not in(cond) out(ncond)
ii. if (not(ncond)) copy in(b) out(a)
12. } until (ncond)
/* termination management */

Here, the map life_step has been translated in the operations already dis-
cussed in the previous section. First, the input matrix a is scattered according to
the distribution pattern (L2), then the neighbors are collected (L3), the sequential
code is called (L4) and the results gathered (L5,L6). Lines L7-LS implement the
reduce module by first scattering the array cond to be reduced and then reducing
it according to the Logic_or operation. The subsequent lines implement the loop
control in a distributed way on all the workers. In particular~ Line L9 broadcasts
the boolean condition to be tested. Then, (line L10) each worker computes the
termination condition. Line Lll copies b in a to s tar t a new iteration in case the
termination condition is not met.

This initial translation is rather inefficient, as many data movement are use-
less. The second step of compilation deals exactly with the optimization of da ta
movement and rearranges the collective operations in order to have a more effi-
cient template execution. Typical program optimizations are: eliminating gather
and s c a t t e r of the same data with the same distribution s t rategy (as they move
da ta around to come back to the initial state); substituting pairs of operations
with more efficient combined ones, (for instance, the pair reduce and broadcast
can be substi tuted with a more efficient reduce-broadcast which requires less
synchronization) and eliminating unnecessary copy operations.

Optimizing our example we obtain the following sequence of operations

/* variable declarations and initialization */
scatter(root, a, [*i3 [*j]) /* map translation */
stencil_gather (a,a, [*i-i] [*i+l])}
repeat {

if (non_first_it){
stencil_gather (b,a, [*i-l] [*i+l])

}
call Simple_step in(a) out(b)
reduce-broadcast (Logic_or, cond, c, controller)
call Not in(cond) out(ncond)

} until (ncond)
gather(b, controller)

/* termination management */

The scatter operations on line L7 and the gather operation on line L6 have been
removed as they leave the cond array distributed in the same way. Moreover, if
we unroll one time the repeat loop we see that the array b is first gathered (line
L5) then copied to a (line LII) and then scattered (line L2). Thus, the interme-
diate loop iterations can be optimized by eliminating the matching scatter and

6 2 7

d

o ._s

I.-

TI (p) - -
T2(p)
" td l "
"td2" +

. 3 i T-
20 40 60 80 100 120

Number of processors

120

100

8O

6o
o)

4O

2O

, i t i i , A

s , (0 , _
S2(p)

"d l " ~,
"d2" +

ideal(p)

.,f,,-'"

t i }

20 40 60 80 100 120
Number of processors

Fig. 3. Completion time of the game of life (right) and speedup (left).

gather and leaving the copy on the local variables. The first scatter of a and the
corresponding s tenci l -ga ther is moved outside the loop and is performed only
in the first iteration. In iterations following the first one the s tenc i l -ga ther is
executed reading directly from b. Moving also the s tenci l -ga ther outside the
loop, we can eliminate the final copy reading directly from the output vector b.

5 E x p e r i m e n t a l r e s u l t s

In Figure 3, we show the completion time (right) and the speedup (left) achieved
by two different versions of the game of life produced using the implementation
template and the compilation algorithm in a partially automated way on the
Fujitsu AP1000. In both pictures, we consider a world matrix of 256×256 and
execute 16 iterations. The solid lines represent the time predicted with the ana-
lytical models and the spots represent measured runs on the machine. Tl(p) and
tdl represent the predicted and measured completion times for the first unopti-
mized translation of the game of life discussed in Sec. 4.2. T2(p) and td2 are the
predicted and measured times of the final optimized version. The corresponding
speedups are Sl(p) and dl (corresponding to T1) and S2(p) and d2 (correspond-
ing to T2). From the picture we can see that the performance prediction achieved
with the analytical models is very close to the measured time. Moreover, the opti-
mization technique appears rather effective, as the optimized and non-optimized
versions discussed in Sec. 4.2 achieve radically different speedup figures.

6 R e l a t e d W o r k a n d c o n c l u s i o n s

In the paper, we have discussed a skeleton based approach to the implementation
of data parallel computations. The work presented here is related to the research
track based on skeletons [4, 7] and to the research track on implementation of
data parallel languages [3, 8].

There are two key points that distinguish our approach from the ones in the
literature. The first regards the abstraction of the skeletons/construct provided.

628

p31 data parallel skeletons present a high abstraction regarding data distribution,
alignment and virtual processor allocation. For instance in spf [7] and in HPF
[8] the programmer is explicitly responsible of data distribution and alignment.
On the contrary, a p31 programmer only states abstract dependencies among
the parallel activities to be executed and the data present in the program. The
number of processes used, the allocation strategy and the data distribution are
completely decided by the compiler using the information related to the pat tern
used. This allows the compiler to make different choices when moving to a differ-
ent target, making code (and performance) portability easier without a program
re-tuning played by the programmer.

The second point regards the combination of the idea of a data parallel
support based on library of collective operations, which is largely used in the
literature (for instance [3, 10]), with the idea of precise analytic performance
models describing the performance of each collective operation. Using the two
ideas together, we derive accurate prediction models for our implementations
and are able to take sharp optimization decisions. The preliminary results ob-
tained are encouraging as they show high speedup and high levels of performance
prediction.

References

1. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. PaL: A struc-
tured high level programming language and its structured support. Concurrency:
Practice and Experience, 7(3):225-255, May 1995.

2. R. S. Bird. An introduction to the Theory of Lists. In Logic of programming and
calculi of discrete design, p. 5-42. Springer-Verlag, 1987.

3. G.E. Blelloch, et al. Implementation of a portable nested data-parallel language.
JPDS, 1(21):4-14, April 1994.

4. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, Mass., 1989.

5. M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A
methodology for the development and the support of massively parallel programs.
Future Generation Computer Systems, 8:205-220, August 1992.

6. M. Danelutto, F. Pasqualetti, and S. Pelagatti. Data parallelism in p31. Draft,
Dipartimento di Informatica, Universit~ di Pisa, December 1996.

7. J. Darlington, Y.K. Guo, H. W. To, and Y. Jing. Skeletons for structured parallel
composition. In Proc. of the 15th ACM SIGPLAN Symposium on PPoPP, 1995.

8. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. Scientific Programming, 2(1), June 1993.

9. H. Ishihata, T. Horie, S. Inano, T. Shimizu, and S. Kato. CAP-II Architecture. In
First Fujitsu-ANU CAP Workshop, November 1990.

10. Message Passing Interface Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications, 8(3/4), 1994.

11. S. Pelagatti. A Methodology for the Development and the Support of Massively
Parallel Programs. PhD thesis, Dep. of Computer Science, Pisa, Mar. 1993.

12. D. B. Skillicorn. Models for practical parallel computation. International Journal
of Parallel Programming, 20(2):133-158, April 1991.

