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Abst rac t .  BSP is a model of parallel computation which employs global 
synchronisation as a means of ensuring that a set of communications has 
reached completion. The efficiency properties of the model have been 
widely investigated. In this paper the modd's associated semantic frame- 
work is studied. An axiomatic treatment of global synchronisation is pre- 
sented. The proof rule proposed for synchronisation is evaluated in the 
context of semantic frameworks for a general parallel process model and 
for data-paraUel computation. 

1 Introduct ion 

A general theory of parallel computation, such as CSP [13], is interesting seman- 
tically because of the rich variety of ways in which processes may interact. It  
is this same richness (non-determinism) that. makes the task of reasoning about 
parallel programs challenging. Parallelism in scientific computation is used as a 
means of increasing execution speed; to this end there is no need to consider 
a process to be an agent which interacts with an unpredictable environment. 
Thus, one concern of the scientific programming community has been the de- 
velopment of a model of parallel computation which allows the construction of 
efficient multi-processor programs and which has an associated set of simple rea- 
soning laws which facilitates proofs of correctness of such programs. A suitable 
framework for parallel scientific computation may be developed by restricting a 
general theory [18]- for example, the SIMD [4] [19] and data-parallel models [2] 
[71 [9] [2ol. 

BSP [21] [14] is another model of computation which restricts the ways in 
which component processes can interact. It  has two features which are of par- 
ticular interest semantically: 

1. global synchronisation (also a feature of the SIMD and data-parallel models); 
and 

2. the separation of communication and computation. 

Aspects of the efficiency of the BSP model have been widely investigated [10]. In 
this paper the semantic framework which underlies the global synchronisation 
of asynchronously communicating processes is explored and BSP is related to 
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other computational models (asynchronous communicating processes and data- 
parallelism). An axiomatic definition [5] [12] of non-blocking (asynchronous) 
communication (put and get) and global synchronisation is developed. 

Global synchronisation is a useful operation to employ when constructing 
distributed scientific programs; its postcondition is a global assertion which con- 
joins the properties of participating processes. Global synchronisation is pleasing 
semantically because it is more transparent to make statements about an entire 
data space than to manage a set of disjoint statements (separate process proofs 
over a partitioned data space) which must be interrelated in "time". 

One technique which can be used to achieve efficient distributed computation 
is to overlap communication and computation within a single process; employ- 
ment of such a technique may prevent communication blocking and permit the 
separation of communication and computation. For example, a CSP [13] process 
may specify the parallel composition of communication and computation as fol- 
]OWS: 

comm - P I] comp - P 

where comm-P is a (synchronised) communication process and comp-P is an 
independent computation process. Alternatively, in an asynchronous environ- 
ment the statement c!!e; S specifies asynchronous sending of the value of the 
expression e along the channel c (communication) followed by execution of the 
statement(computation) S. Operationally, communication and computation can 
be overlapped after evaluation of e. 

Global synchronisation and communication/computation overlapping may 
be combined to provide a framework for the development of transparent and 
efficient distributed programs. This may be achieved within either a synchronous 
or an asynchronous message passing framework. In particular, the provision of 
synchronisation points for asynchronously communicating processes corresponds 
closely to conventional implementations of the BSP model. 

In Section 2 a general theory of asynchronous communication is presented in 
order to highlight the benefits of global synchronisation which is then discussed 
in detail in Section 3. The treatment of asynchronous communication is taken 
from [8] and the treatment of interference from [1] [3] [17]. 

2 General Asynchronous Communication 

An axiomatic definition of asynchronously communicating processes is presented 
here in order to illustrate the difficulties of reasoning in such a setting. Consider 
a parallel distributed computation []iez Pi where H is the parallel composition 
operator and {Pill E I }  is a set of processes. Each process has local data and 
information is exchanged through channels. A channel links two processes and 
is unidirectional (information may flow in one direction only). 

Conventionally, an asynchronous communication along a uni-directional chan- 
nel c is specified by a statement, clle, in a sender process Ps where e is a local 
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expression of Ps and a"matching" statement,  c??x, in a receiver process Pr,  
P,. ~ Is, where x is a local variable of Pr. It is assumed that  Ps can continue 
execution after obeying its send instruction whereas Pr  is blocked at the receive 
instruction until the communication is delivered (asymmetry).  Messages arrive 
in the same order as they are sent. 

The  situation can be modelled by introducing two auxiliary " t race" variables 
(sequences), OUTc and INc, which record the history of messages sent along, 
and received from, channel c. It  is necessary that  the sequence INc be a prefix 
of the sequence OUTc. A send, c!!e, is modelled (locally in a process) by an 
assignment to OUTc: 

OUT~ y! 

where OUTc :: e is the sequence formed by appending the value of the expression 
e to OUTc and p~ denotes the substitution of free occurrences of x in p by y. 

The relationship between the before and after states of a receive depends 
on the external environment. One approach to capturing the influence of the 
environment on a process [1] [3] [15] [17] consists in: 

1. conducting a local proof using assumptions about  the environment; and 
2. discharging the outstanding assumptions using process composition argu- 

ments. 

Thus, locally, a hypothesis may be made about  the effect of external influences 
on a receive, say: 

This relationship must now be verified with respect to the sender process. The 
effect of a "matched" communication is to deliver a value, e, to a variable x 
thereby updating x and IN~: 

z , I N ~  I W! II 
However, it is necessary to ensure that  only semantically matching communica- 
tion pairs are engaged in - i.e. the ith send along c must match the ith receive 
along c. Thus, the concept of co-operation is defined as follows: 

a part  of a local proof {pl}c!!e{ql} 
c o - o p e r a t e s  
with a part  of a local proof {p2}c??x{q2} 
ig 
{pi ^ p= ^ INo = OUTo}c!!e II c??x{q2} 

Note, again, the asymmetry  of asynchronous communication. In practice, in 
order to facilitate proofs, it may be useful to extend the definition of co-operation 
in order tha t  auxiliary variables can be updated simultaneously with message 
delivery. 

Proofs conducted in a general asynchronous communication framework are 
made cumbersome by: 
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1. the need to "match" the two endpoints of a communication; 
2. the possible occurrence, anywhere within a process definition, of a receive 

instruction ; and 
3. the fact that  communicating processes do not synchronise. 

Things can be simplified by placing restrictions on communications- for example, 
by the imposition of requirements that: 

° 

2. 
processes globally synchronise; and 
asynchronous communications are delivered to pre-specified global locations 
before computation can proceed past the synchronisation point, simplify 
matters  in two ways: 

- the need to specify two partners (and, hence, the need for matching) in 
a communication can be avoided; and 

- the need to discharge intermediate receive assumptions can be avoided 
(a communication is only "delivered" at a synchronisation point). 

The details of this restricted framework are now described. 

3 Synchronis ing  Asynchronous  C o m m u n i c a t i o n s  

An asynchronous distributed program is a parallel composition of processes. An 
entity, the superstep [21], is used to specify computation/communication fol- 
lowed by global synchronisation. A superstep denotes a state transformation; 
supersteps may be combined using conventional sequential program operators 
(sequential composition, selection and repetition). Thus, supersteps can be con- 
sidered to be building blocks for programs. For example, the program 

I1~{1, ,100} T~; like{l,. ,~00} Uk 
comprises two supersteps each of which has the same internal process structure. 
There are implicit global synchronisations at the start  and end of the program 
and also between the two supersteps (specified by the composition operator ";"). 

The conventional model of distributed computation is based on a set of pro- 
cesses, each of which has local memory. In BSP, however, memory is modelled as 
a global entity in order to bridge the gap between shared and distributed memory 
architectures. In a similar way a superstep is denoted by a global state transfor- 
mation; in particular, a component process in a superstep is considered to have 
external access to a slice of global memory. The external da ta  of a process Pk 
may be specified using a mechanism resembling the VDM external facility [16]. 
For example, a process Pk which has access only to the (global) array segment 
A[10..20] can be defined as: 

Pk:: 
ex t  A[10..20] 
S 
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where S is the body of the computation.  Thus, da ta  may persist after completion 
of the execution of Pk. In order to prevent possible interference on the global 
memory it is necessary to ensure that  no two components of a superstep have 
access to a common external da ta  element. Let 

disjoint( { Pili E I})  

mean that  each Pi's, i E / ,  access to external da ta  does not interfere with any 
other process's access to external memory (disjoint da ta  spaces). The details of 
such a parti t ion are straightforward and are not explicitly discussed. 

Global synchronisation points can be interpreted as implicit"receive com- 
municatio" commands. In this way the need for two separate communication 
instructions can be avoided. This semantic simplification is acceptable because 
the information from incoming communications cannot be used during a super- 
step. Thus, information sent during a particular superstep can only be used in 
subsequent supersteps. 

The elimination of the receive instruction allows a further simplification in 
the specification of a communication: a communication can be considered to 
be the evaluation of a local expression, e, the asynchronous communication of 
the resulting value and its assignment, at the synchronisation point, to a pre- 
specified variable (address). Operationally, the value may be .delivered to the 
receiver process at any point in the superstep; assignment to the"variable name" 
may take place before the global synchronisation point if it can be guaranteed 
that  the variable name is not referenced in the remainder of the superstep. Only 
the case where a value assigned through communication to an array element (or 
to a subarray) is considered. For example, the s ta tement  

put(e, y/j/) 
specifies tha t  the value of the expression e is to be communicated asynchronously 
to the appropriate process and assigned, on completion of the current superstep 
(or before, if legal), to y[j]. Note: the sending process should not have external 
access to y[j]. 

The definition of send, cite, can be modified to model the semantics of put: 
ra ther  than appending a value to a channel sequence, OUTe, a value is marked 
as "in transit" to a target  destination. An asynchronous communication may be 
viewed operationally as the transmission of a message over a network (or a bus in 
the case of shared memory machines). On completion of a superstep (or before, 
if the situation outlined above obtains) the message is copied into its designated 
location. The asynchronous transfer of information may be modelled by means 
of a function, Transfer, which maps variable names (addresses) and associated 
indices (if any) to values. An individual "in transit" function is defined for each 
process. Let Transfer i denote the "local" communication function of process i. 
The effect of an asynchronous put operation within process i is defined by mod- 
ifying the asynchronous send rule (see [8]): 

{name(y)(j) }¢dom(Transf  eri} .fRTransferi ( R u l e  p u t )  
t Transyeri?(name(y)(j)-.e)}put(e,Y[ll){R} 
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The assumption {name(y) ( j )}  ¢. dom(Trans f e r i }  ensures tha t  multiple 
messages to the same "recipient" are never generated from within a single pro- 
cess. The rule has recourse to a function name in order to distinguish the name 
of a variable from its usual denotation (its value). T r a n s f e r i  ~ (name(y)( j )  --* e) 
is a variant of the conventional notation for array updating [6] [11] and is defined 
by: 

T r a n s f e r  t (name(y)( j )  --* e)(z) = 

T r a n s f e r  ~ (name(y)( j )  ---* e)(y) = 

Trans f e r ( z ) ,  name(z)  ~ name(y)  
e i f j  = k 
Transler(y)(k) otherwise 

In particular, subsequent assignments to the array y should not affect the desti- 
nation of a value "in transit".  Thus, 

name(y) -" name(y; i : f )  

where (y; i : f )  denotes an array which is identical to y except at the point i 
where it has the value f [5] [6] [11]. Although subsequent assignments to y affect 
the conventional denotat ion(a function from index positions to values) they have 
no effect on the "name" interpretation - i.e. substitution is an identity operation 
through the function name; thus, name(z)~ = name(z)  where x is a recta-name 
and e is a meta-expression. Note that  index positions in assertions are t reated 
as values in the conventional way. 

It is necessary to provide a non-interfering composition rule which ensures 
tha t  the "in transit" da ta  of each process are disjoint - i.e. it is vital tha t  processes 
do not initiate conflicting da ta  transfers through two or more communications 
to the same destination. The final state of a process records all local messages 
that  have been sent. Thus, this requirement may be defined by: 

non - inter f ering( { Qi},  i E I})':" 
AiezQi ::~ Vi, j y£ i E I . dom(Trans fe r i )  f'l dom(Trans f e r j )  = 

i.e. at the point immediately preceding the barrier (synchronisation) it is guaran- 
teed that  there are no conflicting communications. In non-interfering situations 
the composition of individual communication functions is non-problematic: if 
the domains of the component functions are mutually disjoint then the union of 
the individual functions will also be a function: 

T r a n s f e r  = Uie tTrans f e r i  

Global synchronisation transforms the constituent process postconditions (ex- 
pressed as the conjunction of process post-conditions AietQi)  into the superstep 
post-condition (specified as an assertion R). Semantically, the barrier ensures 
tha t  all communications are delivered to their destinations and then deletes all 
message routing information. Thus, the relationship between the pre- and post- 
conditions for synchronisation is given by: 
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{R~ ransfer ¢ Transfer} 
Vx • dom(Transfer).x := Transfer(x); Transfer := 0 
{R} (*) 

where o is a predicate transformer which captures the concept of message deliv- 
ery. The operator o is defined inductively over assertions as follows: 

y(k) * b -- f b(y)(k) if name(y)(k) • dora(b) 
[ y(k) otherwise 

(oF) • b = o ( P .  b) 
(P @ Q) ob = (P ob) ¢ (Q o b) 

where P and Q are assertions and o and @ are unary and binary operators, 
respectively. In other words, transforming R to R o b ensures that  all stores 
associated with message destinations, say d, belonging to dom(b) are overwritten 
by the associated values being communicated, b(d). Thc global synchronisation 
of a set of processes, given by the process bodies {S#Ii • I} is defined by: 

{Pi A Transferi = O}Si{Qi}, i • I 
disjoint(Si) 
non - interfering({Qi}, i • I}) 

Transfer AiEIQi =:} (R e ) 0 UiEI Transferi 
{AieIPi) Ilier Si{R} (Rule syn) 

A simple proof which illustrates the use of this rule is given below. 

4 D a t a - P a r a l l e l  A s s i g n m e n t  

Data-Parallel array assignment [9] [19] is a special kind of BSP operation. The 
data-parallel assignment Vi E S.a(i) := E(i) denotes a set of array assignments 
determined by the index set S. In order to prevent interference, the expres- 
sions on the right hand side are evaluated before the assignments are made. 
The purpose of this section is to recast data-parallel assignment within the BSP 
framework and to prove that  the predicate transformer for data-parallel assign- 
ment [9] [20] can be derived from the proof rules for BSP. In order to facilitate 
the expression of data-parallel assignment in BSP an additional operator is in- 
troduced: get is the counterpart of the operation put; a get operation within a 
process is a request that  an expression (over the global store) be evaluated and 
assigned to a local memory location at the end of the superstep. 

One important  distinction between put(e, y~]) and get(e, y[j]) relates to the 
evaluation of e. If e is purely "local" (i.e. the process has external access to the 
variables of e) then it is evaluated in the current state. If e refers to "non-local" 
da ta  then an assumption about its point of evaluation needs to be made. The 
assumption is that  index evaluation takes place in the current state (indices are 
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assumed to be "local") while outermost array references are "non-local" and 
are evaluated at process termination (i.e. the synchronisation point). Consider, 
for example, the operation get(a[i], y[j]). This specifies tha t  the indices i and 
j are evaluated in the current state and that  the reference to the expression 
a[i] is evaluated when all processes have terminated. Operationally, a[i] may be 
evaluated earlier in the computation if it can be guaranteed that  the same value 
will result. Let e I,  where e is an expression, denote e with the outermost  array 
references decorated with the symbol --*. Such decoration is used to denote the 
value of a variable in the final state produced by a process and is similar to the 
initial state mechanism of VDM [16] - for example, 

(x[i] + y[z[k]]) I = 7  [i]+ Y* [~[kll 
In the final state of a process x = x for all array variables x. Assignments subse- 
quent to get(ef,yL~]) have no effect on the "final state" array variables in e f (a 
variable in the final state can be evaluated only in one state and is, consequently, 
a constant).  The meaning of a get operation is defined by: 

{name(y)( j )  } ft dom(Trans fer i )  } 
Transfer~ et " {RTransferit(narne(y)(j)_.et))g (e, y[j]){R) 

( R u l e  ge t )  
The data-parallel assignment Vi • G.a(i) := E(i)  can be represented as a 

BSP superstep where a process Ti is used to update  a[i], for each element i of 
G: 

T/:: 
e x t  a[i] 
{ R i  a (a;i:E(i)) A T r a n s f e r i  = 0} 
get(E(i),a[i]) 
{Ri (~;i:E(i)) ^ T r a n s f e r i  = {name(a)(i)  ~ E( i )}}  (A0) 

where Ri is an assertion which does not involve the function T r a n s f e r .  The 
correctness of T/ follows from R u l e  get .  It  is now shown that  the superstep 
IlieG Ti effects the state transformation 

{AiEGRi (aa;i:E(i))} IliEG Ti{hieGRi}.  
Proof: 

1. proof (.&0) above. 
2. disjoint(Ti ,  i • G) follows since the external da ta  of Ti is a[i] and G is a set. 
3. non - i n t e r f e r ing ({R i  (a;i:E(i))a A T r a n s f e r i  = {name(a)(i)  --* E(i)}},  

i e G ) =  

AieGRi a A T r a n s f e r i  = {name(a)(i)  --* E(i)} =} (a;i:E(i)) 

v i , j  ¢ i ~ G.do~(Trans f~rd  n dom(Tran~/~rj) = 
<since i ~ j ~ name(a)(i)  N name(a)( j )  -- 0 >. 
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4. ^iecRi (:;i:E(i)) ̂  Transferi = {name(a)(i) --} E(i)} ::} 
Transfer  ((AieGRi)a ) o UieGTransferi 

Proof: Transfer ((AieGRi)~ ) o UieGTransferi  = (AiEGRi) o UieGTransferi  
<since every Ri is free of Trans f e r  variables> = 
(AieGRi) o Uiea{name(a)(i)  --* E(i)} 
<from antecedent> = 
(Aie6Ri o {name(a)(i)  --* E(i)}) 
<since the external data of Ti is a[i] then var(Ri) = a[i] > = 
AiEGRi ta;i:E(i)) 
<by definition of o and array substitution> = 
true 
<from antecedent>. 

5. {AiEGI~i a } I l iea Ti{AiEGRi} (a;i:E(i)) 
< Rule  syn, 1, 2, 3, 4 > 

6. ^, avaR(Qi) _ { a ( 0 }  m (^i aQi ( a ; i ' S , )  = a; . . . . .  - ( ) )  . . (  3 . ()) 
<exerose, usmg the defimtmn of simultaneous substitution below>. 
Ra 

<5,6, the definition of simultaneous substitution 
f E(k) if k O 

(a;j E G:  E( j ) ) (k )  = ~, a(k) otherwise 
and letting R = AieGRi>. 

In this way Rule  Data-Para l le l  (see [9] [20]) is indirectly derived from Rule  
syn. 

5 D i s c u s s i o n  

Proof rules for reasoning about synchronisation have been presented. Rule  g e t  

and Rule  put  are variants of standard assignment (to auxiliary variables) rules 
and, thus, soundness and completeness results follow immediately. No explicit 
soundness result has been derived for Rule  syn. However, it has been shown that 
synchronisation with communication delivery can be modelled using a variant 
of data-parallel assignment (see (*) §3). In this case the uniformity of data- 
parallelism is simulated through the function Trans fer .  In particular, individual 
assignments are carried out for each domain/range pair of the function. Thus, 
the soundness result for data-parallel assignment carries over to Rule  syn. 

Rule  Data-Para l le l  is simpler than Rule  syn  for two reasons: (i) a data 
parallel array assignment does not explicitly specify the method of data transfer 
between parallel threads and thus obviates the need for the Trans f e r  function 
and related operators; and (ii) a process model requires the specification of data 
partitioning details which are used in the construction of correctness proofs. In 
contrast, it is possible to separate the concerns of proof and efficiency in the 
data-paraUel model; partition details are crucial to the realisation of efficient 
computations but correctness arguments are independent of the memory organ- 
isation (see Rule  Data-Para l le l  [9] [20]). 



520 

References  

1. Apt K. R., Francez N., de Roever W. P.: A proof system for communicating se- 
quential processes. ACM Trans. Programming Languages Systems,. 2 (3) (1980) 
359-385. 

2. Bouge L., Le Guyadec Y., Virot B., Utard G.: On the expressivity of a weakest 
precondition calculus for a simple data-parallel programming language. Parallel 
Processing: CONPAR 94 -VAPP VI, eds: B. Buchberger ~ J. Volkert, LNCS 854, 
Springer-Verlag, pp 100-111, 1994. 

3. Clint M.: Program proving: coroutines, Acta Informatica, 2 (1) (1973) 50-63. 
4. Clint M., Narayana K. T.: Programming structures for synchronous parallelism, 

Parallel Computing 83, eds: F. Feilmeier, J. Joubert, U. Schendel, North-HoUand, 
pp 405-412, 1984. 

5. DaM O.-J.: Verifiable Programming, Prentice-Hall International, 1992. 
6. Dijkstra E. W.: A Discipline of Programming, Prentice-Hall, 1976. 
7. FORTRAN 90 International Standard, ISO : IEC 1539 : 1991. 
8. Francez N.: Program Verification, Addison-Wesley, 1992. 
9. Gabarro J., Gavalda R.: An approach to correctness of data parallel algorithms, 

Journal of Parallel and Distributed Computing, 22 (1994) 185-201. 
10. Gerbessiotis A. V., Valiant L. G.: Direct bulk-synchronous parallel algorithms, 

Journal of Parallel and Distributed Computing, 22 (1994) 251-267. 
11. Gries D.: The Science of Programming, Springer-Verlag, 1981. 
12. Hoare C. A. R.: An axiomatic basis for computer programming, Comm. ACM, 12 

(10) (1969) 576-580. 
13. Hoare C. A. R.: Communicating Sequential Processes, Prentice Hall, 1985. 
14. Jifeng H., Miller Q., Chen L.: Algebraic laws for BSP programming, Euro-Par 96 

Parallel Processing, Vol. 2, eds: L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert, 
LNCS 1124, Springer-Verlag, pp 359-368, 1996. 

15. Jones C. B.: Tentative steps towards a development method for interfering pro- 
grams, ACM Trans. Programming Languages Systems,. 5 (4) (1983) 596-619. 

16. Jones C. B.: Systematic Software Development using VDM (2nd edn.), Prentice 
Hall, 1990. 

17. Levin G., Gries D.: Proof techniques for communicating sequential processes, Acta 
Informatica, 15 (1981) 281-302. 

18. Owicki S., Gries D.: An axiomatic proof technique for parallel pograms, Acta 
Informatica, 6 (1976) 319-340. 

19. Stewart A.: An axiomatic treatment of SIMD assignment, BIT, 30 (1990) 70-82. 
20. Stewart A.: Reasoning about data-parallel array assignment, Journal of Parallel 

and Distributed Computing, 27 (1) (1995) 79-85. 
21. Valiant L. G.: A bridging model for parallel computation, Comm. ACM, 3 3  (8) 

(1990) 103-111. 


