
S y n c h r o n i s i n g A s y n c h r o n o u s C o m m u n i c a t i o n s

A. Stewart and M. Clint

Department of Computer Science,
The Queen's University of Belfast,

Belfast BT7 1NN,
N. Ireland.

Abst rac t . BSP is a model of parallel computation which employs global
synchronisation as a means of ensuring that a set of communications has
reached completion. The efficiency properties of the model have been
widely investigated. In this paper the modd's associated semantic frame-
work is studied. An axiomatic treatment of global synchronisation is pre-
sented. The proof rule proposed for synchronisation is evaluated in the
context of semantic frameworks for a general parallel process model and
for data-paraUel computation.

1 Introduct ion

A general theory of parallel computation, such as CSP [13], is interesting seman-
tically because of the rich variety of ways in which processes may interact. It
is this same richness (non-determinism) that. makes the task of reasoning about
parallel programs challenging. Parallelism in scientific computation is used as a
means of increasing execution speed; to this end there is no need to consider
a process to be an agent which interacts with an unpredictable environment.
Thus, one concern of the scientific programming community has been the de-
velopment of a model of parallel computation which allows the construction of
efficient multi-processor programs and which has an associated set of simple rea-
soning laws which facilitates proofs of correctness of such programs. A suitable
framework for parallel scientific computation may be developed by restricting a
general theory [18]- for example, the SIMD [4] [19] and data-parallel models [2]
[71 [9] [2ol.

BSP [21] [14] is another model of computation which restricts the ways in
which component processes can interact. It has two features which are of par-
ticular interest semantically:

1. global synchronisation (also a feature of the SIMD and data-parallel models);
and

2. the separation of communication and computation.

Aspects of the efficiency of the BSP model have been widely investigated [10]. In
this paper the semantic framework which underlies the global synchronisation
of asynchronously communicating processes is explored and BSP is related to

512

other computational models (asynchronous communicating processes and data-
parallelism). An axiomatic definition [5] [12] of non-blocking (asynchronous)
communication (put and get) and global synchronisation is developed.

Global synchronisation is a useful operation to employ when constructing
distributed scientific programs; its postcondition is a global assertion which con-
joins the properties of participating processes. Global synchronisation is pleasing
semantically because it is more transparent to make statements about an entire
data space than to manage a set of disjoint statements (separate process proofs
over a partitioned data space) which must be interrelated in "time".

One technique which can be used to achieve efficient distributed computation
is to overlap communication and computation within a single process; employ-
ment of such a technique may prevent communication blocking and permit the
separation of communication and computation. For example, a CSP [13] process
may specify the parallel composition of communication and computation as fol-
]OWS:

comm - P I] comp - P

where comm-P is a (synchronised) communication process and comp-P is an
independent computation process. Alternatively, in an asynchronous environ-
ment the statement c!!e; S specifies asynchronous sending of the value of the
expression e along the channel c (communication) followed by execution of the
statement(computation) S. Operationally, communication and computation can
be overlapped after evaluation of e.

Global synchronisation and communication/computation overlapping may
be combined to provide a framework for the development of transparent and
efficient distributed programs. This may be achieved within either a synchronous
or an asynchronous message passing framework. In particular, the provision of
synchronisation points for asynchronously communicating processes corresponds
closely to conventional implementations of the BSP model.

In Section 2 a general theory of asynchronous communication is presented in
order to highlight the benefits of global synchronisation which is then discussed
in detail in Section 3. The treatment of asynchronous communication is taken
from [8] and the treatment of interference from [1] [3] [17].

2 General Asynchronous Communication

An axiomatic definition of asynchronously communicating processes is presented
here in order to illustrate the difficulties of reasoning in such a setting. Consider
a parallel distributed computation []iez Pi where H is the parallel composition
operator and {Pill E I } is a set of processes. Each process has local data and
information is exchanged through channels. A channel links two processes and
is unidirectional (information may flow in one direction only).

Conventionally, an asynchronous communication along a uni-directional chan-
nel c is specified by a statement, clle, in a sender process Ps where e is a local

513

expression of Ps and a"matching" statement, c??x, in a receiver process Pr,
P,. ~ Is, where x is a local variable of Pr. It is assumed that Ps can continue
execution after obeying its send instruction whereas Pr is blocked at the receive
instruction until the communication is delivered (asymmetry). Messages arrive
in the same order as they are sent.

The situation can be modelled by introducing two auxiliary " t race" variables
(sequences), OUTc and INc, which record the history of messages sent along,
and received from, channel c. It is necessary that the sequence INc be a prefix
of the sequence OUTc. A send, c!!e, is modelled (locally in a process) by an
assignment to OUTc:

OUT~ y!

where OUTc :: e is the sequence formed by appending the value of the expression
e to OUTc and p~ denotes the substitution of free occurrences of x in p by y.

The relationship between the before and after states of a receive depends
on the external environment. One approach to capturing the influence of the
environment on a process [1] [3] [15] [17] consists in:

1. conducting a local proof using assumptions about the environment; and
2. discharging the outstanding assumptions using process composition argu-

ments.

Thus, locally, a hypothesis may be made about the effect of external influences
on a receive, say:

This relationship must now be verified with respect to the sender process. The
effect of a "matched" communication is to deliver a value, e, to a variable x
thereby updating x and IN~:

z , I N ~ I W! II
However, it is necessary to ensure that only semantically matching communica-
tion pairs are engaged in - i.e. the ith send along c must match the ith receive
along c. Thus, the concept of co-operation is defined as follows:

a part of a local proof {pl}c!!e{ql}
c o - o p e r a t e s
with a part of a local proof {p2}c??x{q2}
ig
{pi ^ p= ^ INo = OUTo}c!!e II c??x{q2}

Note, again, the asymmetry of asynchronous communication. In practice, in
order to facilitate proofs, it may be useful to extend the definition of co-operation
in order tha t auxiliary variables can be updated simultaneously with message
delivery.

Proofs conducted in a general asynchronous communication framework are
made cumbersome by:

514

1. the need to "match" the two endpoints of a communication;
2. the possible occurrence, anywhere within a process definition, of a receive

instruction ; and
3. the fact that communicating processes do not synchronise.

Things can be simplified by placing restrictions on communications- for example,
by the imposition of requirements that:

°

2.
processes globally synchronise; and
asynchronous communications are delivered to pre-specified global locations
before computation can proceed past the synchronisation point, simplify
matters in two ways:

- the need to specify two partners (and, hence, the need for matching) in
a communication can be avoided; and

- the need to discharge intermediate receive assumptions can be avoided
(a communication is only "delivered" at a synchronisation point).

The details of this restricted framework are now described.

3 Synchronis ing Asynchronous C o m m u n i c a t i o n s

An asynchronous distributed program is a parallel composition of processes. An
entity, the superstep [21], is used to specify computation/communication fol-
lowed by global synchronisation. A superstep denotes a state transformation;
supersteps may be combined using conventional sequential program operators
(sequential composition, selection and repetition). Thus, supersteps can be con-
sidered to be building blocks for programs. For example, the program

I1~{1, ,100} T~; like{l,. ,~00} Uk
comprises two supersteps each of which has the same internal process structure.
There are implicit global synchronisations at the start and end of the program
and also between the two supersteps (specified by the composition operator ";").

The conventional model of distributed computation is based on a set of pro-
cesses, each of which has local memory. In BSP, however, memory is modelled as
a global entity in order to bridge the gap between shared and distributed memory
architectures. In a similar way a superstep is denoted by a global state transfor-
mation; in particular, a component process in a superstep is considered to have
external access to a slice of global memory. The external da ta of a process Pk
may be specified using a mechanism resembling the VDM external facility [16].
For example, a process Pk which has access only to the (global) array segment
A[10..20] can be defined as:

Pk::
ex t A[10..20]
S

515

where S is the body of the computation. Thus, da ta may persist after completion
of the execution of Pk. In order to prevent possible interference on the global
memory it is necessary to ensure that no two components of a superstep have
access to a common external da ta element. Let

disjoint({ Pili E I})

mean that each Pi's, i E / , access to external da ta does not interfere with any
other process's access to external memory (disjoint da ta spaces). The details of
such a parti t ion are straightforward and are not explicitly discussed.

Global synchronisation points can be interpreted as implicit"receive com-
municatio" commands. In this way the need for two separate communication
instructions can be avoided. This semantic simplification is acceptable because
the information from incoming communications cannot be used during a super-
step. Thus, information sent during a particular superstep can only be used in
subsequent supersteps.

The elimination of the receive instruction allows a further simplification in
the specification of a communication: a communication can be considered to
be the evaluation of a local expression, e, the asynchronous communication of
the resulting value and its assignment, at the synchronisation point, to a pre-
specified variable (address). Operationally, the value may be .delivered to the
receiver process at any point in the superstep; assignment to the"variable name"
may take place before the global synchronisation point if it can be guaranteed
that the variable name is not referenced in the remainder of the superstep. Only
the case where a value assigned through communication to an array element (or
to a subarray) is considered. For example, the s ta tement

put(e, y/j/)
specifies tha t the value of the expression e is to be communicated asynchronously
to the appropriate process and assigned, on completion of the current superstep
(or before, if legal), to y[j]. Note: the sending process should not have external
access to y[j].

The definition of send, cite, can be modified to model the semantics of put:
ra ther than appending a value to a channel sequence, OUTe, a value is marked
as "in transit" to a target destination. An asynchronous communication may be
viewed operationally as the transmission of a message over a network (or a bus in
the case of shared memory machines). On completion of a superstep (or before,
if the situation outlined above obtains) the message is copied into its designated
location. The asynchronous transfer of information may be modelled by means
of a function, Transfer, which maps variable names (addresses) and associated
indices (if any) to values. An individual "in transit" function is defined for each
process. Let Transfer i denote the "local" communication function of process i.
The effect of an asynchronous put operation within process i is defined by mod-
ifying the asynchronous send rule (see [8]):

{name(y)(j) }¢dom(Transf eri} .fRTransferi (R u l e p u t)
t Transyeri?(name(y)(j)-.e)}put(e,Y[ll){R}

516

The assumption {name(y) (j)} ¢. dom(Trans f e r i } ensures tha t multiple
messages to the same "recipient" are never generated from within a single pro-
cess. The rule has recourse to a function name in order to distinguish the name
of a variable from its usual denotation (its value). T r a n s f e r i ~ (name(y)(j) --* e)
is a variant of the conventional notation for array updating [6] [11] and is defined
by:

T r a n s f e r t (name(y)(j) --* e)(z) =

T r a n s f e r ~ (name(y)(j) ---* e)(y) =

Trans f e r (z) , name(z) ~ name(y)
e i f j = k
Transler(y)(k) otherwise

In particular, subsequent assignments to the array y should not affect the desti-
nation of a value "in transit". Thus,

name(y) -" name(y; i : f)

where (y; i : f) denotes an array which is identical to y except at the point i
where it has the value f [5] [6] [11]. Although subsequent assignments to y affect
the conventional denotat ion(a function from index positions to values) they have
no effect on the "name" interpretation - i.e. substitution is an identity operation
through the function name; thus, name(z)~ = name(z) where x is a recta-name
and e is a meta-expression. Note that index positions in assertions are t reated
as values in the conventional way.

It is necessary to provide a non-interfering composition rule which ensures
tha t the "in transit" da ta of each process are disjoint - i.e. it is vital tha t processes
do not initiate conflicting da ta transfers through two or more communications
to the same destination. The final state of a process records all local messages
that have been sent. Thus, this requirement may be defined by:

non - inter f ering({ Qi}, i E I})':"
AiezQi ::~ Vi, j y£ i E I . dom(Trans fe r i) f'l dom(Trans f e r j) =

i.e. at the point immediately preceding the barrier (synchronisation) it is guaran-
teed that there are no conflicting communications. In non-interfering situations
the composition of individual communication functions is non-problematic: if
the domains of the component functions are mutually disjoint then the union of
the individual functions will also be a function:

T r a n s f e r = Uie tTrans f e r i

Global synchronisation transforms the constituent process postconditions (ex-
pressed as the conjunction of process post-conditions AietQi) into the superstep
post-condition (specified as an assertion R). Semantically, the barrier ensures
tha t all communications are delivered to their destinations and then deletes all
message routing information. Thus, the relationship between the pre- and post-
conditions for synchronisation is given by:

517

{R~ ransfer ¢ Transfer}
Vx • dom(Transfer).x := Transfer(x); Transfer := 0
{R} (*)

where o is a predicate transformer which captures the concept of message deliv-
ery. The operator o is defined inductively over assertions as follows:

y(k) * b -- f b(y)(k) if name(y)(k) • dora(b)
[y(k) otherwise

(oF) • b = o (P . b)
(P @ Q) ob = (P ob) ¢ (Q o b)

where P and Q are assertions and o and @ are unary and binary operators,
respectively. In other words, transforming R to R o b ensures that all stores
associated with message destinations, say d, belonging to dom(b) are overwritten
by the associated values being communicated, b(d). Thc global synchronisation
of a set of processes, given by the process bodies {S#Ii • I} is defined by:

{Pi A Transferi = O}Si{Qi}, i • I
disjoint(Si)
non - interfering({Qi}, i • I})

Transfer AiEIQi =:} (R e) 0 UiEI Transferi
{AieIPi) Ilier Si{R} (Rule syn)

A simple proof which illustrates the use of this rule is given below.

4 D a t a - P a r a l l e l A s s i g n m e n t

Data-Parallel array assignment [9] [19] is a special kind of BSP operation. The
data-parallel assignment Vi E S.a(i) := E(i) denotes a set of array assignments
determined by the index set S. In order to prevent interference, the expres-
sions on the right hand side are evaluated before the assignments are made.
The purpose of this section is to recast data-parallel assignment within the BSP
framework and to prove that the predicate transformer for data-parallel assign-
ment [9] [20] can be derived from the proof rules for BSP. In order to facilitate
the expression of data-parallel assignment in BSP an additional operator is in-
troduced: get is the counterpart of the operation put; a get operation within a
process is a request that an expression (over the global store) be evaluated and
assigned to a local memory location at the end of the superstep.

One important distinction between put(e, y~]) and get(e, y[j]) relates to the
evaluation of e. If e is purely "local" (i.e. the process has external access to the
variables of e) then it is evaluated in the current state. If e refers to "non-local"
da ta then an assumption about its point of evaluation needs to be made. The
assumption is that index evaluation takes place in the current state (indices are

518

assumed to be "local") while outermost array references are "non-local" and
are evaluated at process termination (i.e. the synchronisation point). Consider,
for example, the operation get(a[i], y[j]). This specifies tha t the indices i and
j are evaluated in the current state and that the reference to the expression
a[i] is evaluated when all processes have terminated. Operationally, a[i] may be
evaluated earlier in the computation if it can be guaranteed that the same value
will result. Let e I, where e is an expression, denote e with the outermost array
references decorated with the symbol --*. Such decoration is used to denote the
value of a variable in the final state produced by a process and is similar to the
initial state mechanism of VDM [16] - for example,

(x[i] + y[z[k]]) I = 7 [i]+ Y* [~[kll
In the final state of a process x = x for all array variables x. Assignments subse-
quent to get(ef,yL~]) have no effect on the "final state" array variables in e f (a
variable in the final state can be evaluated only in one state and is, consequently,
a constant). The meaning of a get operation is defined by:

{name(y)(j) } ft dom(Trans fer i) }
Transfer~ et " {RTransferit(narne(y)(j)_.et))g (e, y[j]){R)

(R u l e ge t)
The data-parallel assignment Vi • G.a(i) := E(i) can be represented as a

BSP superstep where a process Ti is used to update a[i], for each element i of
G:

T/::
e x t a[i]
{ R i a (a;i:E(i)) A T r a n s f e r i = 0}
get(E(i),a[i])
{Ri (~;i:E(i)) ^ T r a n s f e r i = {name(a)(i) ~ E(i)}} (A0)

where Ri is an assertion which does not involve the function T r a n s f e r . The
correctness of T/ follows from R u l e get . It is now shown that the superstep
IlieG Ti effects the state transformation

{AiEGRi (aa;i:E(i))} IliEG Ti{hieGRi}.
Proof:

1. proof (.&0) above.
2. disjoint(Ti , i • G) follows since the external da ta of Ti is a[i] and G is a set.
3. non - i n t e r f e r ing ({R i (a;i:E(i))a A T r a n s f e r i = {name(a)(i) --* E(i)}},

i e G) =

AieGRi a A T r a n s f e r i = {name(a)(i) --* E(i)} =} (a;i:E(i))

v i , j ¢ i ~ G.do~(Trans f~rd n dom(Tran~/~rj) =
<since i ~ j ~ name(a)(i) N name(a)(j) -- 0 >.

519

4. ^iecRi (:;i:E(i)) ̂ Transferi = {name(a)(i) --} E(i)} ::}
Transfer ((AieGRi)a) o UieGTransferi

Proof: Transfer ((AieGRi)~) o UieGTransferi = (AiEGRi) o UieGTransferi
<since every Ri is free of Trans f e r variables> =
(AieGRi) o Uiea{name(a)(i) --* E(i)}
<from antecedent> =
(Aie6Ri o {name(a)(i) --* E(i)})
<since the external data of Ti is a[i] then var(Ri) = a[i] > =
AiEGRi ta;i:E(i))
<by definition of o and array substitution> =
true
<from antecedent>.

5. {AiEGI~i a } I l iea Ti{AiEGRi} (a;i:E(i))
< Rule syn, 1, 2, 3, 4 >

6. ^, avaR(Qi) _ { a (0 } m (^i aQi (a ; i ' S ,) = a; - ()) . . (3 . ())
<exerose, usmg the defimtmn of simultaneous substitution below>.
Ra

<5,6, the definition of simultaneous substitution
f E(k) if k O

(a;j E G: E(j)) (k) = ~, a(k) otherwise
and letting R = AieGRi>.

In this way Rule Data-Para l le l (see [9] [20]) is indirectly derived from Rule
syn.

5 D i s c u s s i o n

Proof rules for reasoning about synchronisation have been presented. Rule g e t

and Rule put are variants of standard assignment (to auxiliary variables) rules
and, thus, soundness and completeness results follow immediately. No explicit
soundness result has been derived for Rule syn. However, it has been shown that
synchronisation with communication delivery can be modelled using a variant
of data-parallel assignment (see (*) §3). In this case the uniformity of data-
parallelism is simulated through the function Trans fer . In particular, individual
assignments are carried out for each domain/range pair of the function. Thus,
the soundness result for data-parallel assignment carries over to Rule syn.

Rule Data-Para l le l is simpler than Rule syn for two reasons: (i) a data
parallel array assignment does not explicitly specify the method of data transfer
between parallel threads and thus obviates the need for the Trans f e r function
and related operators; and (ii) a process model requires the specification of data
partitioning details which are used in the construction of correctness proofs. In
contrast, it is possible to separate the concerns of proof and efficiency in the
data-paraUel model; partition details are crucial to the realisation of efficient
computations but correctness arguments are independent of the memory organ-
isation (see Rule Data-Para l le l [9] [20]).

520

References

1. Apt K. R., Francez N., de Roever W. P.: A proof system for communicating se-
quential processes. ACM Trans. Programming Languages Systems,. 2 (3) (1980)
359-385.

2. Bouge L., Le Guyadec Y., Virot B., Utard G.: On the expressivity of a weakest
precondition calculus for a simple data-parallel programming language. Parallel
Processing: CONPAR 94 -VAPP VI, eds: B. Buchberger ~ J. Volkert, LNCS 854,
Springer-Verlag, pp 100-111, 1994.

3. Clint M.: Program proving: coroutines, Acta Informatica, 2 (1) (1973) 50-63.
4. Clint M., Narayana K. T.: Programming structures for synchronous parallelism,

Parallel Computing 83, eds: F. Feilmeier, J. Joubert, U. Schendel, North-HoUand,
pp 405-412, 1984.

5. DaM O.-J.: Verifiable Programming, Prentice-Hall International, 1992.
6. Dijkstra E. W.: A Discipline of Programming, Prentice-Hall, 1976.
7. FORTRAN 90 International Standard, ISO : IEC 1539 : 1991.
8. Francez N.: Program Verification, Addison-Wesley, 1992.
9. Gabarro J., Gavalda R.: An approach to correctness of data parallel algorithms,

Journal of Parallel and Distributed Computing, 22 (1994) 185-201.
10. Gerbessiotis A. V., Valiant L. G.: Direct bulk-synchronous parallel algorithms,

Journal of Parallel and Distributed Computing, 22 (1994) 251-267.
11. Gries D.: The Science of Programming, Springer-Verlag, 1981.
12. Hoare C. A. R.: An axiomatic basis for computer programming, Comm. ACM, 12

(10) (1969) 576-580.
13. Hoare C. A. R.: Communicating Sequential Processes, Prentice Hall, 1985.
14. Jifeng H., Miller Q., Chen L.: Algebraic laws for BSP programming, Euro-Par 96

Parallel Processing, Vol. 2, eds: L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert,
LNCS 1124, Springer-Verlag, pp 359-368, 1996.

15. Jones C. B.: Tentative steps towards a development method for interfering pro-
grams, ACM Trans. Programming Languages Systems,. 5 (4) (1983) 596-619.

16. Jones C. B.: Systematic Software Development using VDM (2nd edn.), Prentice
Hall, 1990.

17. Levin G., Gries D.: Proof techniques for communicating sequential processes, Acta
Informatica, 15 (1981) 281-302.

18. Owicki S., Gries D.: An axiomatic proof technique for parallel pograms, Acta
Informatica, 6 (1976) 319-340.

19. Stewart A.: An axiomatic treatment of SIMD assignment, BIT, 30 (1990) 70-82.
20. Stewart A.: Reasoning about data-parallel array assignment, Journal of Parallel

and Distributed Computing, 27 (1) (1995) 79-85.
21. Valiant L. G.: A bridging model for parallel computation, Comm. ACM, 3 3 (8)

(1990) 103-111.

