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A b s t r a c t .  Deadlock prevention is usually realized by imposing strong 
restrictions on packet transmissions in the network so that  the result- 
ing deadlock free routing algorithms are not optimal with respect to 
resources utilization. Optimality request can be satisfied by forbidding 
transmissions only when they would bring the network into a configura- 
tion that  will necessarily evolve into a deadlock. Hence, optimal dead- 
lock avoidance is closely related to deadlock prediction. In this paper  it 
is shown that  wormhole deadlock prediction is an hard problem. Such 
result is proved with respect to both static and dynamic routing. 

1 I n t r o d u c t i o n  

Large-scale multiprocessors are usually organized as ensembles of nodes, each having 
its own processor, local memory, and other supporting devices. Since they do not 
physically share memory, nodes must communicate by passing messages through an 
interconnection network. For efficient and fair use of network resources, a message 
is often divided into packets prior to transmission: a packet is the smallest unit of 
communication that  contains routing information. Neighboring nodes may send packets 
to one another directly, while nodes that  are not directly connected must rely on other 
nodes in the network to relay packets from source to destination. This is accomplished 
by a routing function that  selects, for each pair of nodes u and v, the set of edges 
incident on u that  can be used to forward messages to v. It is possible to choose all the 
channels a packet will use to reach its destination before the transmission is s tar ted 
(static routing) or, conversely, one link at  a t ime during the transmission (dynamic 
routing). A dynamic routing algorithm is called acyclic if it forces packets to use acyclic 
routes. It is called minimal if packets are always t ransmit ted along shortest paths.  

Deadlock is a dramatic consequence of dynamic resource (node and channel ca- 
pacity) sharing: no packet can be delivered because of a cyclic wait for resources to 
be released by other packets. Two approaches have been taken in the l i terature to 
cope with deadlocks, namely deadlock detection and resolution, in which the routing 
algorithm does not take care of deadlocks that  are solved by a flow control procedure 
whenever they occur, and deadlock prevention [2, 3], in which the routing function is 
properly designed in order to avoid the occurrence of deadlocks. Usually, deadlocks are 
avoided by imposing strong restrictions on packet transmissions in the network. Thus, 
the resulting deadlock free routing algorithms are not optimal with respect both  to 
resource utilization and to the number of network configurations allowed [4]. A dead- 
lock avoidance algorithm is optimal if it forbids packet transmissions only when they 
would bring the network into a configuration from which it is impossible for at  least 
one packet to reach its destination. Thus, the existence of a polynomial-t ime algorithm 
predicting if a deadlock will necessarily occur implies the existence of a polynomial- 
t ime optimal deadlock avoidance algorithm. The store and forward deadlock prediction 
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problem has already received some at tention in the fiterature. In [1] it has been shown 
that  the problem is Co-NP complete if static or acyclic dynamic routing is used for 
packet transmissions. Conversely, in [5] the polynomial-t ime decidability of the prob- 
lem has been proved in the case of unrestricted dynamic routing, that  is, when packets 
are allowed to use the same buffer an arbi trary number of times. 

Objective of this paper  is studying the deadlock prediction problem with respect 
to wormhole routing. Wormhole routing [6, 9, 8, 10] was proposed for enjoying the 
benefits of store and forward (highly dynamic resource sharing) while discarding its 
disadvantages (large network latency). A packet is divided into a number of flits (flow 
control digits) for transmission. The header flit of a packet, or worm, governs the 
route. As the header advances along the chosen route, the remaining flits follow in a 
pipeline fashion. If the header encounters a channel already in use, it  is blocked until 
the channel becomes available. Rather  than buffering the remaining flits by removing 
them from the network channels (as in virtual cut through, for instance) the flow control 
within the network blocks the trailing flits and they remain in flit buffers along the 
established route. Once a channel has been acquired by a worm it is reserved for that  
worm. The channel is released when the last flit has been t ransmit ted  on the channel. 
Since blocked worms holding channels remain in the network, wormhole routing is 
part icularly susceptible to deadlock. 

In section 2 it is proved that  the deadlock prediction problem is Co-NP complete 
in case of both  unrestricted and minimal dynamic routing. Because of the polynomial- 
t ime decidability of the store and forward problem with respect to unrestricted dynamic 
routing [5], the la t ter  result implies that  wormhole deadlock prediction is definitely 
more difficult (modulo P e N P )  than store and forward deadlock prediction. Notice 
that  the results concerning acyclic dynamic and static routing in [1] cannot be trivially 
extended (by generalization) to wormhole routing, since the two models are inherently 
different. Furthermore, the acyclic dynamic routing considered in that  paper  is not 
minimal. In section 3 the Co-NP completeness is proved for stat ic routing. Finally, in 
section 4 some conclusions are briefly discussed. 

1 .1  P r e l i m i n a r y  d e f i n i t i o n s  

Formally, a network is modeled as a pair N = (G, W) in which G = (V(G), E(G)) 
denotes the support graph of N and W is the set of worms residing in the network. A 
worm in the network is subject to a transmission when a vertex u transfers its header 
to an adjacent node v through a free channel (u, v) according to the routing function 
and the other flits are pipelined behind it. As already remarked, the routing strategy 
can be static or dynamic according to when the output  channel to forward a worm 
to its destination is chosen. The network configuration at a given time S specifies the 
channel occupied by each flit at  that  time and, in case of static routing, the channel 
requested by each header flit. Any channel is assigned to at  most one worm (flit) at 
each time step. 

A network is in the final configuration if each flit has reached its own destination and 
thus has been removed by consumption. A transition from S to some other configuration 
S ~ is performed every time at least one worm is subject to a transmission. 

A network configuration S is said safe if there exists a sequence of transitions 
reaching the final configuration. An unsafe configuration is called bound to deadlock 
and may happen because either a deadlock or a fivelock occurrence. The DEADLOCK 
PREDICTION problem consists in deciding if a given network configuration is bound to 



190 

deadlock. Depending on whether static, (unrestricted) dynamic or minimal routing is 
used, the corresponding deadlock prediction problem will be denoted, respectively, as 
SR-WDP, DR-WDP or MDR-WDP. 

2 Dynamic routing 

In this section we prove the hardness of predicting deadlocks if worms can choose their 
routes dynamically, node by node at transmission time. We start by considering urn-e- 
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Fig.  1. Network corresponding to the boolean formula (Xl Vx2 V x3) A (nXl V -1x2 V -nx3). 
Rectangles represent nodes, and worms are depicted as black dots chained by arrows. 

stricted dynamic routing. In this case, worms are allowed to pass an arbitrary number 
of times through the same node, and this characteristic can be used to temporarily 
remove some worm from a congested zone of the network in order to allow to different 
worms to reach their destinations. 
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Theorem 1. The DRoWDp problem is Co-NP complete also for underlying planar graphs. 

Proof. We prove that deciding if a network is in a safe configuration, is NP-complete. 
The membership to NP is trivial. In order to prove its completeness, we use a polynomial- 
time reduction from the NP-complete ~-SATISFIABILITY (in short, 3-SAT) problem [7]: 
given a boolean formula F in conjunctive normal form with size 3 clauses onto the set 
X -- {xl, x2 , . . . ,  x ,}  of boolean variables, decide if there exists a t ruth assignment for 
X that  makes the formula true. Let F = cl ^c2  ^ . . . / k e r n  atld cj = 131 Vlj2 Vlj3, with 
ljh e {xl . . . . .  x ,}  U {-~xl , . . . ,  -~x,}, h = 1, 2, 3. The corresponding planar network NF 
consists of three main subnetworks: No, representing to the set of clauses of F, N x ,  
used to model a t ruth assignment for X, and N~, introduced to test whether a chosen 
truth assignment satisfies F.  

N~ is the '~arallel" composition of 3m branches, each corresponding to a literal in 
a clause. Branch jh, j = 1 . . . .  , m and h = 1, 2, 3, includes a pair of nodes containing 
the first two flits of worms cjh and C~h which move in opposite directions and consist 
of 2m @ 5 flits each. Node containing the header of Cjh is connected to a free node 
a,  while node containing the header of C'jh is connected to a free node da. In turn, 
N x  is the "parallel" composition of n subnetworks, each corresponding to a boolean 
variable. Subnetwork N(xi )  consists of two branches, one corresponding to the t ruth 
assignment t r u e  to variable x~ and the other to false: the first branch includes a chain 
of 2m + 3 nodes containing worm ti and the first flits of a 2m + 10 flits long worm 
t~. Of course, the two worms move in opposite directions. Similarly, the second branch 
contains the two worms f~ and f[. The headers of t~ and f~ are contained in the same 
node. Nodes containing the headers of t~ and f/i are connected to a node /3 that, in 
turn, is connected to a,  while nodes containing the headers of ti and f i  are connected 
to a node rib. Finally, N~ is a chain of 2m nodes. Nodes 2j - 1 and 2j, j = 1 , . . . ,  m, 
of the chain contain the first two flits of worms wj, consisting of 3 flits, and the first 
two flits of worms w~, consisting of 4 flits. As usual, they move in opposite directions. 
Node containing the header of wl is connected to da, while node containing the header 

is connected to rib. Worms wj and Cjh, j ---- 1 , . . . ,  m and h -- 1, 2, 3, have their of Wrn 
destination in node db. Worms wj, j = 1 , . . . , m ,  ti, t~, fi and f[, i = 1 , . . . , n ,  have 
their destination in node da. Finally, if ljh = xi (respectively, "-xi) then the destination 
d~h of worm cjh is the second node of the chain containing ti (f/) of subnetwork N(xi) .  
See figure 1 for an example of the reduction. 

Suppose first F is satisfiable. Let x i~ , . . ,  xik be the variables set to t r u e  by a 
t ruth assignment satisfying F.  If the headers of worms t i~ , . . ,  tik and f ik+~,. . ,  f i ,  are 
movedto db then at least one worm out of cjl ,  cj2 and cj3 is able to reach its destination, 
for every j ---- 1, . . . ,  m. Thus, all the wl, w2 , . . . ,  wm can be moved in the nodes on Nc 
left free after the previous movements making free the path to the destination da of 
the tis and fls. Next, the wjs are forwarded to their destination. Afterwards, all the 
t~ and f~ may arrive at da using a path through /3. Hence the network is in a safe 
configuration. 

Conversely, if F is not satisfiable then every t ruth assignment for X is unable to 
satisfy at least one clause. Thus, for every choice of t i~ , . . . t lk  and f ik+x, . . ,  f i ,  to 
move forward there exists at least one j < m such that cjl,  cj2 and cj3 cannot reach 
their destinations. This implies that wj, w j + l , . . . ,  wm cannot free the chain in N,~ 
and, hence, the tis and fis cannot reach their destinations. Notice that the Cjh still 
remaining in Nc cannot be temporarily "parked" in some N(x i )  in order to make room 
for w j,  since the number of free nodes is not large enough. Thus, the final configuration 
cannot be reached by this sequence of moves and it can be easily verified that this is 
true for any sequence of moves. Hence the network configuration is not safe. 
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Next theorem extends the previous result to minimal routing. Notice that it does 
not follow by generalization, since, in general, a given network configuration can be a 
deadlock one if only shortest paths must be used, but it can safe if worms are allowed 
to use arbitrary paths to their destinations. 

T h e o r e m  2. The M D R - W D P  problem is Co-NP complete. 

Proof. A reduction from 3-SAT is still used to prove the completeness of deciding if a 
network is in a safe configuration. Let F ~- C l Ac2 A. . .  Acre and ej = l j l  Vii2 Vlj3, with 
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Fig.  2. Network N corresponding to a boolean formula f ( x l ,  x2, xz) with two clauses. 

ljh E {xl . . . . .  x ,}  U {-,xl . . . .  , -~x,}, h = 1, 2, 3. Clause cj is mapped to a subnetwork 
N(cj) .  "parallel" composition of three branches, each corresponding to a literal in the 
clause. Branch h, h --- 1, 2, 3, includes a chain containing a (6m + 1) flits long worm 
cjh. Node containing the header of cjh is connected to a free node d(wj),  while node 
containing its tail is connected to a free node d(v); these last nodes are common to 
all the three branches. Variable xi, i = 1 , . . . ,  n, corresponds to a subnetwork N(xi) .  
As in the previous theorem, it includes the parallel composition of two branches each 
containing a (2m + 1) flits long worm, respectively, t~ and fi.  Nodes containing the 
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headers of ti and fl, respectively d~ and d~, are connected to the first node of a 
(2m + 1) nodes long free chain ending with node al ,  while nodes containing the tail 
flits are connected to all nodes d(wj),  j = 1 , . . . ,  m. Finally, a chain N~, of 2m nodes 
including the first two flits of m worms wl , . . .w in ,  each long 3 flits, completes the 
network. Node containing the header of wl is connected to d(v), while node containing 
the second flit of wm is connected to all the ai .  The destination of worm wj is d(wj) ,  the 
destination of all the t~ and f~, i = 1 . . . . .  n, is d(v) and, finally, if ljh = x~ (respectively, 
-,xi) then the destination of worm cjh is node d~ (db). In figure 2 an example of the 
reduction is shown. Notice that there is only one shortest path connecting worms ti 
and fi to d(v): it passes through the chain ending with a i  and then through N(w) .  
Similarly, the unique shortest path connecting worm cjh to d a passes through d(wj) 
and then through the opportune N(xi) .  Three shortest paths connect worm wj to 
d(wj) ,  one for every branch of N(cj) ,  all passing through d(v). 

If F is satisfiable, it is easy to derive from a truth assignment satisfying F a sequence 
of worm movements reaching the final configuration (similarly to the proof of theorem 
1). Conversely, if F is not satisfiable then every truth assignment for X is unable to 
satisfy at least one clause. Thus, for every choice of t i l , . . ,  tit, and f ik+l, . . ,  fi~ tO 
move forward there exists at least one j _< m such that c,4t, cj2 and cjz cannot reach 
their destinations. This implies that wj, w j + l , . . . ,  wm cannot reach their destinations 
and, hence, not even the tis (f/s), whatever sequence of moves is performed. Indeed, 
let ljh = "~xit and tq be the worm occupying the chain in N(Xil)  that ends with 
a q .  In order to move fix in the same chain and permit to Cjh to free the path to be 
used by wj, tq should be completely moved in N(w) .  But tq is (2m + 1) flits long 
and N ( w )  includes a chain of 2m nodes, thus tq cannot free the chain ending with 
a i l  unless all the worms wl . . . .  wm have already left N(w) .  This means that the final 
configuration cannot be reached whatever sequence of moves is performed, that is, the 
network configuration is not safe. 

3 S t a t i c  r o u t i n g  

This section shows that knowing in advance the routes to be followed by worms does 
not help in predicting wormhole deadlocks, as stated in the next theorem. 

T h e o r e m  3. The SR-WDP problem is Co-NP complete. 

Proof. Again, the NP-completeness of the complementary problem is proved by a re- 
duction from 3-SAT. Network NF corresponding to F = cxVc2 . . .Vcm, cj = ijl Vlj2Vlj3, 
Gh ~ {~1 . . . . .  x , }  O { - ~ 1 , . . . ,  ~ , } ,  h = 1, 2, 3, will be described (see figure 3). 

Clause cj corresponds to a subnetwork including a main cycle t~0,~l,tx2,u3,AJ _J .̂~ .̂~ a~, a~ 
~J ~J -~ is occupied by and a path/3~,/32,/33,J ~ ~'4,~'5,~'6-~3 RJ t~J. the triple of nodes ~'2h-l,~'2h, u2h--2 

worm Cjh corresponding to literal Ijh,  h = 1, 2, 3, with the header contained in node 
a i and each/3~ is connected to fl~+l, j = 1 . . . .  m - 1. Variable xi, i = 1,. n, 

2 h - - 2  ' " " " ' 

¢1, ¢2, with two branches corresponds to a subnetwork composed by a chain i .i . - . ,  IP6m+6i 
. . . .  t connected to ¢~,,+6: the first branch r ' ,  #], #~, . . . ,#6,~+s corresponds to variable xi 

i s t i and contains worm vi, and the second one -~T,- '#x,-~P2,.- .  , ' m # S r r t + 6  corresponds to 
variable -,xi and contains worm ",vi. The headers of vi and -,vi are in nodes T i and 
-~r i. A chain of 6m + 6 nodes including a 6m + 6 flits long worm w completes the 
network. Node d(v) containing the header of w is connected to/3~, while node p con- 
taining the tail flit of w is connected to all the ¢~, i = 1 , . . . ,  n. Worm w must be 
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Fig.  3. Network NF corresponding to F = (x2 V xs V Xl) A (--x2 V --xs V --x~). 

routed through/31,/3~,. . . ,  f l~ , . . . / 3~ , /3~ , . . . , / 3~ ,  this last node being its destination. 
Worms vi and  -~vi must be routed through ¢~m+6 . . . .  , ¢~, p and then through all the 
chain. N F ( w )  till d(v.) that is their destination. Worm Cjh must be routed through 

3 3 and then, if the hth literal of clause cj is xl (respec- O/~h--l~dl'(2h) mod 690/(2h+i) mod 6 
tively, -,xi), through nodes p~, r i (-~p~,-~ri), this last node being its destination. 

Similarly to theorem 1, if F is satisfiable it is easy to derive the sequence of move- 
ments corresponding to a truth assignment satisfying F.  

Before proving the converse, notice that if vi has occupied ¢~, . .  i • , Csm+s, then 
the only way for a worm e Th to reach its destination ".ri is that vi reaches d(v) .  This 
statement is true because of the lengths of worms w, vi and "~vi and of the chain 
¢~ , . . - ,  ¢~m+6 (i.e., worms w, vi and  -,vi  cannot be temporarily "parked" anywhere 
to permit to other worms to reach their destinations). Suppose now that F is not 
satisfial~|'e. Then every t ruth assignment for X is unable to satisfy at least one clause. 
Thus, for every choice of v i i , . . ,  vik and -~vi,+~, . . . .  v i ,  to move forward, there exists 
at least one j < m such that c j l ,  cj2 and  cjs  cannot reach their destinations. Because of 
what previously noticed, the only possibility for reaching the final configuration is thus 
to let w arrive at its destination, in order to free the routes to t (v)  and thus to permit 
to c j l ,  cj2 and  cj3 to arrive at their destinations. To do this, c j l ,  cj2 and  cj3 must all be 
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advanced: of one or two nodes it is easy to verify that the previous configurations are 
all bound to deadlock. This means that the final configuration cannot ever be reached 
whatever sequence of moves is performed, that is, the network configuration is not safe. 

4 Conclusions 

In this paper the problem of predicting wormhole deadlocks has been considered. Such 
problem is closely related to the one of optimally avoiding deadlocks with respect to 
channel utilization. Unfortunately, it turns out that predicting wormhole deadlocks is 
always an hard problem, both for static and for dynamic routing. Because of the results 
in [1] and especially of those in [5] about deadlock prediction in store and forward net- 
works, this means that wormhole deadlock prediction definitely more difficult (modulo 
P ~ N P )  than store and forward deadlock prediction. 
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