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The perceptual linearization of video display systems
should play a significant role in medical image presen-
tation. It maximizes the faithfulness of information
transfer to the human observer; it provides a method
for standardizing the appearance of images across
different display devices; and it allows for calculation
of the inherent contrast resolution of different display
devices. This paper provides insight into the process of
perceptual linearization by decomposing it into the
digital driving level-to—monitor luminance relation-
ship, the monitor luminance-to-human brightness per-
ception relationship, and the construction of a lineariza-
tion function derived from these two relationships. A
discussion of previous work in these areas is given. We
then compare and contrast the results of previous
work with recent experiments in our laboratory and
related work in vision and computer science. We
conclude that (1) sufficiently good visual models exist
for agreeing on a standard method of calculating the
perceptual linearization function; (2) improvements in
the resolution and luminance distribution of the digital-
to-analog circuitry in display systems are required for
medical imaging; and (3), methods for calculating a
linearization remapping from a perceptual lineariza-
tion function currently have significant error and should
be replaced with methods that minimize perceptual
error.
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ERCEPTUAL linearization of video dis-
play monitors should play a significant role
in medical image presentation. First, it allows
the maximum transfer of information to the
human observer because each change in digital
driving level of the display yields a perceptually
equal step in perceived brightness by the human
observer. Second, for an image to be perceived
as similarly as possible when seen on different
displays, the two displays must be standardized,
which can be done when they have been percep-
tually linearized. Third, perceptual lineariza-
tion allows us to calculate the perceived dy-
namic range of the display device, which allows
comparing the maximum inherent contrast reso-
lution of different devices.

Perceptual linearization was first suggested
for medical image presentation by Pizer and
Chan,! and in follow-up work®?® at the Univer-
sity of North Carolina at Chapel Hill (UNC). To
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best visually present an image represented as
digital data to the human observer, we would
like to maximize the information transferred in
mapping the digital driving levels (DDLs) to
perceived brightness levels. Perceptually linear-
izing the mapping from the image data space to
the human observer’s visual sensory space most
faithfully transmits changes in intensities in the
image to the human observer.%%10 This simply
means that to the human observer, equal abso-
lute changes in the input values to the display
system should result in equal absolute changes
in the perceived visual sensation.

Many advantages have been attributed to
linearization. Most of these were first described
by Pizer and Chan,' and have been further

qualified more recently by others.!'12 We will

categorize them as error minimization, standard-
ization, and characterization.

Minimization of error in the display system
refers to minimizing distortions in the relation-
ship between input data and perceived sensa-
tions, so that equal changes in DDLs are re-
flected as equal changes in perceived brightness.
We have intentionally chosen not to refer to this
as optimization, to carefully distinguish percep-
tual linearization from choosing an optimal
gray-scale processing for an image. Perceptual
linearization by itself is not intended to be the
optimal gray-scale presentation of the original
data. The important choice of best gray-scale
presentation is dependent on the specific image
content and visual task, and occurs before the
linearization. For instance, some image-process-
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ing technique (window and level, or adaptive
histogram equalization) might be performed on
the original image, resulting in the desired
gray-scale processed image, whose data values
are distributed in a linear uniform manner.
Then the perceptual linearization is responsible
for making sure the relationships in these data
are properly conveyed to the human observer by
having the display system reflect the equal
changes in the input data as equal changes in
the perceived sensations of the human observer.

Standardization is the attempt to make im-
ages presented on different display devices
appear similar. As modes of radiologic acquisi-
tion become increasingly computerized, more
and more of the display media are digitally
based (computed tomography, nuclear medi-
cine, magnetic resonance imaging, positron-
emission tomography, computed radiography).
This has increased the need for standardization
as more images are viewed on monitors as well
as on light boxes. Blume et al'? provide a list of
several advantages of standardization: predict-
able and reproducible gray-scale rendition, simi-
larity between presentations of the same image
on different display devices, and the ability to
make comparisons between quantitative ob-
server performance measurements over differ-
ent display systems.

Perceptual linearization provides a quantita-
tive characterization of the display system. First,
the quantitative information generated from
the linearization provides a better description
of a display system than simply the luminance
range of the monitor. This would help in compar-
ing display systems. Second, the quantification
provides specific information that helps the
manufacturer of the display system make the
best design choices.

With the increasing use of video monitors for
the display of medical images in radiology
departments, we are seeing an increased aware-
ness of the problems of video display, especially
in the areas of obtaining and maintaining high-
quality reproduction of the images, and in the
area of standardizing presentations of images
across different display systems. To achieve the
benefits of error minimization, standardization,
and characterization of the display systems, the
medical community needs to fully understand
perceptual linearization and agree upon a meth-
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odology for computing the linearization. Others
have advocated this need and proposed display
function standards.''1? Before a decision is
made on such a standard it is necessary to
understand all the issues involved. This paper
will attempt to provide a basic understanding of
the issues involved in perceptual linearization.
A complete description of perception lineariza-
tion as applied to medical imaging in radiology
is given in an earlier paper.”® In the second
section of the paper, we present a paradigm for
describing perceptual linearization in its three
basic components: monitor luminance to per-
ceived brightness, DDLs to monitor luminance,
and calculation of a resulting linearization given
the first two relationships. In the next three
sections, we address each of these components
in turn. In each of these sections we cover
previous work in this and related fields, as well
as new results from our laboratory and tie these
results into a single framework for analysis.
Finally, the last section summarizes what conclu-
sions can be drawn from the earlier sections,
and discusses what areas still require investiga-
tion.

PARADIGM FOR PERCEPTUAL LINEARIZATION

The process of displaying an image on a video
display monitor to the human observer is de-
picted in Fig 1. This paradigm applies equally
well to the display of images on film. Initially, an
object such as the human body is scanned, and
the resulting signal (for instance tissue density)
is represented on the computer as a matrix of
points, called pixels. This scanning samples the
original source data (continuous analog func-
tion) into discrete data (set of digital values).
Each pixel is represented by a scalar value,
usually in the range of 0 to 4,096 for medical
image data. These are the values referred to as
“recorded intensities” in Fig 1. The optional
second step is that some set of image-processing
operations such as intensity windowing or con-
trast enhancement may be performed on the
recorded intensities resulting in the displayable
intensities. These values are then scaled into
DDLs, which must be in the range accepted by
the digital-to-analog converter (DAC) of the
display system. This scaling is done by a table
lookup operation, often referred to as a lookup
table (LUT) or color map table. LUTs are often



INTRODUCTION TO PERCEPTUAL LINEARIZATION

Computer Syster:n

23

Video Monitor

~
J

o
[
3
3] -
= 0
B8 32 o
EE1 s oS
212 &Il 5
g e 2 o
o = a-= :—E
=
____/ o
J | :
greyscale LUT '
mapping 'DAC versus Luminance

(DACLUM)

N

| ‘ perception
(o)) ¢]
Luminance versus

Percelved Brightness
(CSF)

7

(CSF ° DACLUM)

Fig 1. Diagram of components of perceptual linearization.

used to do intensity windowing dynamically, or
to implement a linearization LUT (these are
sometimes called gamma correction curves).
The output of the LUT goes to the DAC, which
takes the input DDL and converts it to an
analog voltage level which is used to drive the
monitor at different luminance levels. The lumi-
nance generated by the monitor is then re-
corded and processed by the eye-brain human
visual system, resulting in the sensation of
brightness by the human observer.

Two important topics relevant to the discus-
sion of perceptual linearization are described
elsewhere and are not discussed in this paper:
imperfect display devices and imperfect source
images. The standard video display device in
use today is the cathode-ray tube (CRT) and
there are known problems with the reproduc-
tion of luminance values on CRTs. Discussion
of such problems including spatial and temporal
nonlinearities, CRT noise, internal scatter, and
distortion are well described."!415 The second
area is noise in the source image. Noise in the
source image has been discussed in some of the
linearization work'? and also incorporated into
some of the recently proposed visual models'®!7
discussed below in the section on applying
human visual models.

From the standpoint of linearization there
are two important relationships in this process,
that of the DDLs of the computer’s DAC and
the luminance of the monitor, and that of the

monitor luminance and the brightness per-
ceived by the human observer. The first relation-
ship of DAC to luminance will be referred to as
DACLUM. The second relationship, that of
luminance to perceived brightness, is best exam-
ined using a luminance contrast sensitivity func-
tion (CSF). CSFs measure the change in fumi-
nance (AL) required for a target, so that it may
be detected from the surround luminance (L) as
a function of the surround luminance. More
specifically, contrast thresholds are defined as
AL/L, whereas CSFs are defined as its recipro-
cal, ie, L/AL. CSFs in this paper will refer to
L/AL versus L, whereas in vision literature,
CSFs usually refer to L/AL versus spatial fre-
quency of the target.

If we think of the DACLUM and CSF curves
as functions, and compose them on their com-
mon variable of luminance, we arrive at a
CSF-DACLUM function that defines the over-
all effect of the DACs, monitors, and human
perception in the display system. The inverse of
this function can be determined and used to
remap the image values to perceptually linear-
ize the relationship between the gray levels of
the image in the computer and the sensation of
brightness to the human observer. Thus, we
have defined the three important components
of perceptual linearization: the DACLUM curve,
the CSF curve, and the linearization curve,
which is the inverse of CSFeDACLUM. We will
first consider the CSF curve, which can be
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considered fixed because of the wiring of the
visual system. Second, we will consider the
DACLUM curve, which is decided by the manu-
facturers and designers of the video display
system, and should be based on the CSF curve.
Finally, we will consider the calculation of the
linearization, which depends on the results of
both the CSF and DACLUM components.

RELATIONSHIP OF LUMINANCE
TO PERCEIVED BRIGHTNESS

The CSF curve shows the relationship be-
tween the luminance displayed on a monitor
and the brightness perceived by the human
observer. The important attributes are the lumi-
nance range of the monitor and the distribution
of distinguishable gray levels over that range
that are perceivable by the human observer.
The luminance range of display devices may
vary between devices, as well as grow larger as
higher brightness monitors are developed. By
characterizing the CSF over the entire lumi-
nance range of the human visual system, we can
define the CSF response at all possible monitor
luminance levels.

Our goal is to quantitatively model the hu-
man observer’s sensitivity to contrast differ-
ences, ie, an observer’s ability to distinguish
between different luminance levels. Quantita-
tively modeling the CSF allows us to calculate
proportional changes in contrast sensitivity of
the human observer that will correspond to
equal proportional changes in DDLs. It also
allows us to calculate the perceived dynamic
range (PDR) of the human observer for a
display system, where the PDR is the number of
different gray levels that can be distinguished
for that display system. The problem that arises
in defining a CSF is that there is no overall
function valid across the many variables affect-
ing the presentation of an image (size of the
image, luminance of the surround, ambient
light, viewing distance, adaptation, etc). We can
define CSFs for specific experimental tasks and
measure them. However, these would only be
accurate models for tasks that exactly match the
experimental conditions. This suggests two dif-
ferent avenues of exploration. One method is to
take experimental or theoretical models from
vision research and parameterize them to fit the
clinical presentation task as closely as possible.
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The second avenue is to create experimental
tasks that match generic clinical image presenta-
tion situations and empirically define a CSF for
that task. These are discussed and compared in
detail below.

Applying Models From Vision Research

Researchers have been studying the human
observer’s ability to make contrast distinctions
for well over 100 years. Early experiments often
consisted of determining relationships between
two physical patches of possibly differing lumi-
nance. Experiments that measured this relation-
ship were graphed as AL/L versus L; where AL
is the change in luminance required to detect a
difference from the surrounding field of lumi-
nance, L. These curves are generally referred to
as contrast threshold curves. An example study
depicting this relationship is shown in Fig 2.18
The contrast threshold, or the minimum differ-
ence between two luminances at which an
observer can detect a difference between the
luminances, is also referred to as a just notice-
able difference.’

By the early twentieth century it was recog-
nized that the overall luminance range of the
human observer!® is ~0 to 10® candela/m? and
contrast threshold over this range could be
broken into three areas: scotopic, mesotopic,
and photopic. In the low-luminance scotopic
region (below ~5 X 1073 cd/m?), the lumi-
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Fig 2. Representative experimental results showing con-
trast threshold relationship, AL/L, versus L {from Murchin-
son's).
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nance detection is mainly via rods, with signifi-
cant contribution from the parafoveal area. In
this region, referred to as the Rose-De Vries
region, contrast detection is dependent on lumi-
nance and roughly follows a power (— 4) law.
In the photopic region beginning around 1
cd/m? to 10 cd/m?, referred to as the Weber
region, the contrast threshold is generally con-
stant, and the response is mainly from the foveal
area, which is tightly and homogeneously packed
with cones.? The curve in this region is de-
scribed by the Weber-Fechner law, which states
that for a luminance, L, and a change in
luminance, AL, the ratio AL/L is constant. The
most sensitive (smallest) measured value of this
constant is in the range 0.003%! to 0.01.2° Finally,
the mesotopic region describes the middle area
between these two regions where there is a
combination of the effects of the scotopic and
photopic regions.

In more recent times, especially since the
advent of computers and video displays, work
has concentrated on the presentation of grat-
ings (square or sine wave, generally) centered
on a large surround background luminance,
where the observer’s task is to detect the grat-
ing. This has lead to the development of CSFs
that define the contrast sensitivity of an ob-
server, defined by L/AL, versus the spatial
frequency of the grating (ie, cycles/degree).?22}
More recently some researchers have extended
the stimulus targets to include different types of
objects, eg, gaussian blobs.?+?

Many experimental or theoretical models
have been proposed, including models based on
empirical evidence and physiologic measure-
ments on animals. Although several of these
models, including both empirically oriented
models such as log relationships (Weber-
Fechner, etc), power law (% law, etc), and
exponential density relationship and physiologi-
cal based models (local cone, global cone, etc),
offer good general descriptions of the relation-
ship, they do not provide the necessary param-
eters (such as stimulus descriptions, image and
visual noise, luminance of stimulus and sur-
round, ambient light levels, etc) to model impor-
tant attributes of the presentation that are
present in the clinical environment.

However, several authors!®!” have recently
defined models based on mathematical descrip-
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tions of the components of the human visual
system that more completely and accurately
represent the visual function. To test their
models, they have taken empirical studies from
the literature, encoded the parameters of the
study into their visual model, and found that
their models accurately predict the experimen-
tal results'®2 (S. Daley, personal communica-
tion, January 1994). If we can parameterize
more comprehensive models such as these to
match clinical situations, we should be able to
reasonably predict the CSF for a specific presen-
tation situation. Furthermore, by studying the
range of possible CSF values, we may be able to
determine a single CSF that represents the
majority of clinical conditions. Blume et al'?
have calculated estimates for several individual
presentation conditions for each of the Barten,
Daly, and Rogers-Carel models. Importantly,
they found good agreement between the predic-
tions of these models, and have suggested the
adoption of either the Barten or Daly models
for use as a display function standard."?

We have studied the three models'®!"?" and
implemented the Barten model based on the
descriptions in Barten'®®% and Blume.!? We
then performed preliminary investigations to
see (1) whether the different models were
complete enough (ie, did they take into account
factors we found to be significant in our previ-
ous experimental work); and (2) whether by
cxamination of the ranges of parameter values
to the Barten model we could find a single set of
parameter values that would be suitable for the
purpose of specifying a representative CSF.
After this, we examine how well our recent
experimental results correlate with the represen-
tative CSF model predications. In separate
work we are investigating whether specific clini-
cal viewing tasks can be accurately modeled,
including the detection of mammographic fea-
tures on digital mammograms.

Are Vision Models Complete Enough?

Some of the variables from our experiments
that had significant effect on the measured CSF
function were not represented by the visual
models. The most significant difference was
caused by multiple levels of surround. Most
recent empirical results are based on the presen-
tation of a grating of slight luminance difference
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from a constant surround. The stimulus defini-
tions of the models are similarly defined to have
only a single surround. In our experimental
work?!* and in general vision research,’%-3? ex-
perimenters have found that the luminance of
the surround plays a significant role in the CSF.
Because the models calculate contrast sensitiv-
ity for targets differing slightly from a single
uniform surround luminance, they model an
artificial condition where the human observer is
most sensitive to distinguishing contrast differ-
ences. In most clinical situations, an image will
have a certain expected mean luminance (sur-
round) for the overall image, and the stimulus
will be a different luminance, often located in
smaller local surround, which has yet another
mean [uminance (and which the observer may
concentrate most of their foveal gaze on). A
model that allows specification of the more
general condition of a large background sur-
round mean fuminance, a local target surround
mean luminance, and the stimulus luminance
should more accurately predict clinical presen-
tation results.

A second area not modeled was the type of
stimulus. Because such a large body of research
has been done using gratings, the models were
also based on gratings with variables to allow for
size, number of cycles, and amplitude of the
gratings. Objects we wish to detect in medical
imaging are more varied, often including blobs
or other structures not easily or accurately
modeled as gratings. Thus, another enhance-
ment would be to allow the specification of
different types of basic visual stimuli, eg, gauss-
ian blobs based on Bijl et al’s?® or others work.
Human observers are most sensitive to line or
bar-type objects in detection tasks, so gratings
by themselves do serve as a good upper bound
for our most sensitive responses.

The third concern was the length of time the
observer viewed the presentation. Radiologists
generally scan images in one of two modes:
directed, eg, to rule out a mass in the upper left
lobe, versus undirected, eg, looking at the lungs
as an aside during a shoulder bone x ray. In a
directed search, the clinician will likely spend
more time carefully and exhaustively searching
the area of interest. On an undirected search, a
quicker, more cursory search is made. One way
of modeling these two modes would be for the
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visual models to have a parameter correspond-
ing to the length of time the image is presented
to the observer. Previous vision experimental
work has shown that detection can depend on
the length of presentation. For example, in Bijl
et al®, they found that for presentation times of
(.13 and 0.25 seconds, the temporal properties
of the stimulus play a role, whereas for longer
presentation times of 0.50 and 1.0 seconds,
detection is mainly determined by the spatial
characteristics of the stimulus. In our experimen-
tal work, including our most recent experiment
(see Experimental Results) we generally found
that performance increases with longer presen-
tation times (although our times usually varied
between 1 and several seconds). Although pre-
sentation time seems to be an important factor
to quantify, it is not currently a parameter of the
visual models.

In addition to the above three effects, there
are other variables that affect the CSF, notably
image content and visual task.>* Barrett sug-
gests two classes of tasks: classification and
estimation, with classification (including detec-
tion) being the usual task in radiology.’* Bur-
beck and Pizer® suggest classifying the visual
tasks as detection, object and structure extrac-
tion, and recognition. In modeling the CSF for
contrast threshold detection, we are only consid-
ering the detection aspect, and effort should be
made to study the effects of the higher level
functions as well. Although it would be desir-
able to incorporate all of these effects, we are
not currently aware of theoretical or experimen-
tal results that would allow the definition and
incorporation of the other effects into the visual
models.

Can a Representative CSF Be Determined?

Because the predictions made from visual
models are expected to be accurate for the
specific presentation conditions described by
the parameters and not necessarily for the more
general situation encountered in the display of
medical image data, we face the problem of
choosing a specific visual model, and more
importantly, parameters of that model that are
representative of a range of clinical conditions.
To address this issue, we determined the range
of values for each of the parameters of the
Barten model,’? and then calculated the result-
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ing CSF values for all possible combinations of
these parameter values.!> Analysis of the result-
ing CSF values showed a concentration of
values in one region. Furthermore, when the
CSF values were plotted versus the luminance
axis as needed for modeling the luminance to
perceived brightness relationship, the result was
a family of curves with similar shape with
respect to the luminance axis, and slightly differ-
ent heights with respect to the CSF axis.!? From
this result a single representative CSF curve,
matching the most sensitive CSF values from
the family of curves was chosen.'* Although this
single choice of parameters can not accurately
model all possible clinical applications, it serves
two important purposes. First, it describes the
shape of the curve that is representative of the
family of curves. This is important because
perceptual linearizations are not affected by
multiplicative changes (height of CSF curve),
which simply scale the size of the threshold
steps, but only the shape of the curve. Second, it
provides us with a good upper bound target for
designing our DACLUM curves because it rep-
resents the highest sensitivity achievable under
expected clinical conditions. Importantly, the
specific parameters of the CSF identified in our
work closely matched those arrived at indepen-
dently by Blume et al.!?

Experimental Results

Little work has been done in this area. The
only previous published work the authors are
aware of was the initial work performed at UNC
during the development of perceptual lineariza-
tion.'%7 Although these experiments were per-
formed mainly in the interest of actually measur-
ing and implementing perceptual linearization
on display systems in our laboratory, effort was
made to make the experimental tasks realistic
for medical image presentation conditions.

We recently conducted two additional experi-
ments'3 to address three specific questions: how
would an experimentally measured clinical task
compare with the predicted Barten CSF curve
(as well as with our earlier experiments); what
was the interobserver variability; and did the
presentation time difference modeling the ef-
fect of directed versus undirected search (4
seconds v 1 second) cause a significant differ-
ence in CSF values? The CSF curves were
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found to be similar in shape to those predicted
by the visual models, but with some differences
caused by insufficient contrast resolution of the
DAC on our display system, and visual effects
not accounted for by the model.!> Measurement
of the interobserver variability is important if
perceptual linearization is used for display func-
tion standardization. For the five observers used
in our previous experiments® we did not find a
significant difference in different observers con-
trast threshold values. However, with the larger
number of subjects in these experiments, we
found a statistically significant difference in
contrast threshold values for the different ob-
servers using a nonparametric randomized block
analysis of variance calculation.”? However, im-
portantly, the shape of the curve was consistent
for all observers, meaning that the same percep-
tual linearization can be used because lineariza-
tion is insensitive to multiplicative changes as
discussed earlier. However, this does imply that
for perceptual linearization to work as a method
of standardization, it must be based on the more
sensitive subjects, ie, the smallest contrast
threshold values. This also implies that the steps
in luminance values between adjacent DDLs
must be less than the observer’s smallest con-
trast threshold values for those luminances.
Shortening presentation times generally has the
effect of decreasing performance as the task
becomes more difficult. In these experiments,
detecting the target was more difficult when the
local surround was significantly different from
that of the global surround. A significant inter-
action was found between presentation time
and local surround luminance, with poorer per-
formance (smaller CSF values) when local sur-
rounds differed more from the global surround
and when presentation time was short.!?

Discussion of CSF Choices

Although there are differences between the
predictions from models and our experimental
results, we know that both the Daly and Barten
models provide good predictions for empirical
vision research results. Also, the models predict
similarly shaped curves compared with our re-
sults, only shifted upwards reflecting higher
(more sensitive) CSF values. Because the model
can easily be used to provide predictions for the
CSF for specific clinical situations, as well as
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generalized or representative CSF curves to
compare against, using the models provides an
advantage over using results from specific experi-
ments. More importantly, the adoption of a
specific mathematical formula for calculating
the CSF as part of the perceptual linearization
would accrue the significant advantage of allow-
ing it to be standardized and easily imple-
mented on all display systems. Thus, as recently
proposed by Blume et al,'> we also recommend
using a model such as Barten’s or Daly’s for the
CSF function as a basis for calculating the
resulting linearization display function from the
inverse of CSFe DACLUM and the adoption of
specific parameters to these models (based on
either the previous Blume et al'> or Hemminger
et al'? results). However, we would recommend
that such models be extended to incorporate
multiple levels of surround, different types of
stimuli, and presentation times as parameters.
Also, until the differences between the model’s
predictions and our empirical results are more
completely explained, one should bear in mind
that the model may overestimate the CSF val-
ues compared with experimental results for
stimuli more similar to medical image presenta-
tions.

DAC TO LUMINANCE RELATIONSHIP

The DACLUM curve shows the digital driv-
ing levels and how they correspond to lumi-
nances generated on the monitor. An example
for our Sun Sparc2 workstation (Sun Microsys-
tems Inc, Mountain View, CA) is shown in Fig
3. There are three important attributes: the
overall luminance range of the monitor; the
number of digital driving levels of the DAC; and
the distribution of output voltages of the DAC
for these levels.

Luminance Range of Monitors and Film

The luminance range of a standard worksta-
tion monitor is ~0 to 100 cd/m?, with some
medical image displays ranging up to ~200
cd/m?, and monitors capable of 600 cd/m?
currently under development. For comparison,
the maximum luminance of a standard light box
is 2,056 cd/m?, a mammography lightbox is
3,426 c¢d/m?, and a hot lamp is 17,130 cd/m?.
These values are from standard clinical equip-
ment in our department, and are not through
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film, so the maximum luminance when emitted
through the lowest densities on film will be
slightly less.

Number of DAC DDLs

Except for special purpose or prototype
DAGs, all the DACs made today for gray-scale
monitors support 8 bits of contrast information
resulting in 256 input levels. Most digital repre-
sentations of medical image data are 4,096
levels (12 bits), although in some modalities
sometimes slightly less than this number of
levels contain significant information.!® Thus,
the 4,096 possible input image data values must
be represented as one of only 256 output DAC
values. How many output levels are clinically
necessary depends on the image, the image
processing, and the specific clinical task.

Clearly, a trade-off is being made in not
presenting all the information in the image data
in a single presentation. Thus, from an informa-
tion transfer standpoint, we are compromising
the data if we use anything less than a 12-bit
DAC to achieve 4,096 levels equally spaced in
perceptual space, although the spacing between
DDLs would be less than one contrast threshold
step in this case. However, from a clinical
standpoint, we may be able to make a satisfac-
tory clinical decision with fewer DDLs than the
upper bound of 4,096 levels. To date, the
authors are not aware of careful scientific stud-
ies that have evaluated the number of levels
needed for specific clinical tasks. Some authors
have attacked the lower bound of this problem
by trying to answer the question, “how many
DDLs is too few?” Most of these efforts have
addressed the question of when the observer
sees texture-contouring artifacts caused by the
use of too few DDLs. Sezan et al* found that
texture artifacts in radiographs could be avoided
by using at least 9 to 10 bits with a visual
model-based CSF (logarithmic, !4 power, and
local cone), whereas using a default identity
mapping still showed quantization artifacts at
12 bits. However, it is important to remember
that these studies have addressed the question
of whether a visual artifact is detected, not
whether clinical performance changes.

The contrast threshold relationship between
Al./L and L at each DDL is shown for our Sun
monitor with an 8-bit DAC in Fig 3. An identity
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Luminance cd/m?*

Fig 3. Monitor curves for the Sun Sparc station with 8-bit
DAC, extrapolated 10- and 12-bit DAC curves for same system,
arepresentative CSF curve, and recent UNC experimental data
are plotted as contrast threshold curves. Vertical axis is AL/L,
and horizontal axis is luminance in candelas per square meter.
Both axes are plotted in log scale. The large oscillations in the
monitor curves at small luminance values (less than 10-1) are
caused by the bouncing back and forth between almost no
change in luminance {log of AL/L, when AL/L is almost zero)
and very small changes in luminance divided by very small
average luminance {log of AL/L, when AL /L is almost equal to
1).

mapping (no perceptual linearization) is used,
and the analog contrast and brightness levels on
the monitor are set to maximize the luminance
range of the monitor while not introducing
visual artifacts such as blooming. To represent
the monitor characteristics as a contrast thresh-
old function, we calculated the contrast thresh-
old, AL/L, as

(AL/L) = (L[DDL,,,] - L[DDL,])/
[(L{DDL,] + L[DDL,..])/2] (1)

where n ranges across all the DDL values (1
to 256), and L{DDL,] is the luminance at DDL
n. Overlaid on Fig 3 is our representative CSF
curve and the most recent UNC experimental
results, as described in the previous section. By
interpolating between the values of an 8-bit
DAC, we have estimated what the 10-bit and
12-bit DACs with similar distributions might
look like (Fig 3). Ideally, to see as many distinct
gray levels as possible, the contrast threshold
step sizes for the monitor curves should be
equal to or less than the CSF curve. However, in
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Fig 3, the 8-bit DAC curve is entirely above the
CSF curve, whereas the 10-bit DAC curve is
close to the representative CSF curve, and the
12-bit DAC curve is completely below it. In Fig
3, the default monitor curves are based on
identity mappings rather than ones that prop-
erly match the CSF curve, so we would expect
from the work on quantization artifacts3¢ that
fewer levels will be required when the distribu-
tion of luminance levels of the DAC are better
matched to a CSF. Figure 3 suggests that
around 10 bits for a CSF matched function or 12
bits for a default identity mapping would be
required to represent each contrast threshold
step. This correlates well with the results of
Sezan et al.3

Distribution of DAC Luminance Levels

As important as the number of levels sup-
ported by the DAC is the distribution of output
voltage levels produced. DACs generally pro-
duce a uniform linear function distribution of
voltage levels versus the input DDLs. These
voltage levels are input to the monitor’s CRT,
which directs a beam of electrons onto the
phosphorescent material coating the surface of
the monitor. The luminous output of the phos-
phor is not directly proportional to the input
driving voltage level, but instead, roughly fol-
lows a nonlinear power function. Ideally, the
step sizes between the adjacent DDLs should be
constant on a perceived brightness scale. This
matching of the DACLUM and CSF curves
maximizes the transfer of contrast information
to the human observer.’” However, in actual
practice, there are often significant variations.

Although the monitor curves are similar in
shape to the representative CSF curve in Fig 3
above, there are several important differences.
First, the slope on the monitor curves is differ-
ent from the representative CSF at low lumi-
nances (10~3 to 10~") and at high luminances (0
to 5 x 10%). This implies that the DACLUM
curve does not match the CSF curve well, thus it
does not optimize the transfer of contrast infor-
mation. A second point is that there is signifi-
cant variation in the contrast threshold step size
along the monitor curves. Variations in AL/L
values appear as up and down movements
(spikes) along the contrast threshold curve in
Fig 3. At low luminances, there are extreme
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variations because at some points AL/L is
nearly 0 between adjacent DDLs, whereas in
other cases there is a very small luminance
change at a very small average luminance val-
ues, resulting in AL/L being nearly equal to 1.
From 0 to 10 cd/m?, the AL/L values are mostly
the same, with only a few values significantly
different (seen as small spikes); however, from
20 cd/m? to 80 cd/m?, there is greater variation,
often with one interval having AL/L values
twice that of their adjacent neighboring inter-
vals. The large variations in the low luminance
and higher luminance ranges undermine the
proportionality needed to achieve perceptual
linearization.

Discussion of Monitor Design Choices

Several changes in the design of monitors
would help improve the number and distribu-
tion of distinguishable luminance levels produc-
ible on the monitor. First, increasing the lumi-
nance range of a monitor would increase its
potential PDR. However, it is apparent that, at
least for our representative CSF curve and for
the latest UNC experiments as shown in Fig 3,
almost all of the 256 levels are at least one
contrast threshold step apart, and thus increas-
ing the luminance range would not result in a
significantly greater PDR. To take advantage of
a larger luminance range, more digital driving
levels on the DAC are required.

Second, the number of bits on the DAC
needs to be increased to increase the number of
DDLs available. The exact number required is
difficult to determine, and may well depend on
the task. However, according to studies measur-
ing quantization artifacts, it seems likely that 10
bits are required if the distribution matches the
CSF; more are required if the distribution does
not. This correlates well with analysis of the
CSF representative curve which suggests that
about 10 bits are required for an example
workstation monitor. It may well be useful to
increase the number of bits all the way to 12 bits
to completely represent the input displayable
intensities, as well as provide additional levels
to help compensate for poor distributions of
luminance levels. Although these arguments
suggest the need for 10 or more bits in the DAC,
work needs to be done to evaluate whether
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clinical performance improves as the number of
bits is increased above 8.

Third, whereas the DACLUM curve for exist-
ing display systems is somewhat similar to CSF
curves, changing the distribution of the DAC
luminance levels to more accurately match the
curvature of the CSF curve and minimizing the
fluctuations in the DACLUM curve would im-
prove the proportionality of the final DAC-to-
perceived-brightness relationship. The authors
are not aware of previous work examining
nonstandard DAC distributions based on match-
ing CSF distributions.

CALCULATING THE LINEARIZATION FUNCTION

The characteristics of the human observer’s
visual system, ie, the range of perceived bright-
ness and the contrast sensitivity over that range,
are essentially fixed, although these vary some-
what depending on viewing conditions, image
content, and visual task. The provider of the
display system controls the three factors of the
DACLUM relationship: the monitor luminance
range, the number of discrete levels of the
DAC, and the distribution of the resulting
luminance levels. These are usually determined
by economic factors. In the ideal situation, the
manufacturer of the display system would sup-
port a perceptually uniform system through a
DAC luminance distribution that matches the
human visual CSF. If this is not practical, then
the display system can be perceptually linear-
ized by a postlinearization remapping step.
Several methods for computing a linearization
function from the DACLUM and CSF curves
have been suggested. Essentially the task is to
compose the DACLUM and CSF functions into
a single function and then derive the inverse of
this function. Applying this inverse function to
the displayable intensities, eg, through a display
lookup table (ie, LUT in Fig 1) will result in a
proportional relationship between the display-
able intensities and the sensation of perceived
brightness.

Calculation of Perceptual Linearization Function

Pizer and Chan, in their initial description of
perceptual linearization, gave both an intuitive
and a formal analytical approach.' In the intui-
tive approach one calculates

L =L, + (L) X [1/(CSF(L_y)], (2)
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until L, reaches or exceeds the luminance of the
maximum DDL. L, represents the luminance at
the ith DDL value, and (I/{CSF(L,)], the con-
trast threshold at luminance L; Thus in the
intuitive formulation one simply steps 1 contrast
threshold in luminance at each step, starting at
the minimum luminance, until the maximum
luminance is reached. The analytical formula-
tion is given by Pizer and Chan and the specifics
of implementing the linearization by Cromartie
et al.® Also, an approximation that further
simplifies the analytical solution is given by Ji et
al.¥” In similar work on color scales, other
authors have developed methods that super
sample in the perceptual scale, and then choose
the closest digital driving scale of the moni-
tor.38.39

In all of these approaches, the final step takes
a calculated desired luminance level and then
selects the DDL that most closely matches this
luminance. Because there are limited discrete
samples in the DDL range (256), and because
they are often not distributed in a fashion
matching the CSF function, errors may be
introduced during each of these matching steps.
Overall, this error may negate the intended
effect of equal perceptual steps if the values are
not chosen with regard to minimizing the percep-
tual error of the overall process. Examples of
this can be seen in Fig 4, which shows a
linearization function previously used in our
laboratory versus the standard monitor curve
and the representative CSF curve. As observed
earlier, there is significant variation in the
monitor step sizes at very low Juminance levels,
small spikes in the midrange, and larger varia-
tion (up to 200% changes in step sizes) in higher
luminance levels. Surprisingly, though, the lin-
earized curve is flawed as well. The variation in
step sizes of luminance output levels of the
linearization curve is consistently larger than
that of the default monitor curve throughout
most of the range. This is mainly caused by the
distribution of DAC luminance levels not match-
ing the CSF well and suggests that a larger
number of DDLs may be necessary to compen-
sate for display systems with suboptimal distribu-
tions of DAC luminance levels.

Another important issue is the number of
DDLs in the resulting map. As noted in the
DACLUM section, the luminance step size
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Fig 4. Monitor DACLUM curve for the Sun Sparc2 Station
and resulting linearization. Linearization is based on CIELUV
(s power law) algorithm for CSF, measured monitor lumi-
nance levels of the display for the DACLUM, and a 128-level
linearization remapping calculated using the standard ap-
proach of choosing the DDL with the luminance level nearest
to that given by the linearization function. (—), 8-bit monitor
default; (-), 8-bit monitor linearized; (---), representative
curve.

between adjacent DDLs should ideally be less
than the contrast threshold at that luminance.
For a system with a limited number of DDLs
with which to work, increasing the number of
DDLs used in the linearization remapping usu-
ally means increasing the perceptual error in
the mapping. Thus, one trades improved con-
trast resolution (size of contrast threshold step)
for quality of the rendition (perceptual error in
linearization). Ideally, one would have a way to
quantify this tradeoft.

Optimally Calculating the Linearization
Remapping

None of the above techniques attempt to
minimize the error introduced during this match-
ing of (CSFeDACLUM)~! desired luminances
and actual available discrete luminance levels.
General solutions exist for the similar signal
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quantization problem of mapping a continuous
variable into a discrete one.***! This problems
differs in that (1) we have fixed nonuniform
spacing of the luminances resulting from the
DDLs; (2) we can use any or all of the DDLs in
the mapping; (3) we want to minimize the
equalness of the steps, not simply the distance
from the result sample points to the desired
ones; and (4) we would like to maximize the
number of DDL levels steps used (to avoid over
quantizing the input data) but not at the cost of
compromising the accuracy of the linearization.
We have proposed the development of an opti-
mal solution to this problem, one that mini-
mizes the perceptual error in the resulting
linearization and describes the actual resulting
PDR or achievable PDR. In recent work, we
have suggested a methodology for calculating
the minimum perceptual error in the lineariza-
tion based on the statistical variance of the
contrast threshold of each step of the lineariza-
tion remapping.*?

Discussion of Linearization

To date, the methods developed have been
aimed at simply implementing a reasonable
(CSFe-DACLUM)"! function. For many moni-
tors, the limitation of 8-bit DACs and subopti-
mal luminance distributions (not matching the
CSF) mean that calculated linearizations may
not be very optimal, and in some cases like the
one shown in Fig 4, turn out to be worse than
not linearizing. Developers of DACs need to
better match their distributions to CSF distribu-
tions, both to improve the inherent perceptual
linearity of their system, and to better allow for
after-market perceptual linearization correc-
tions of the display system. Finally, work needs
to be done to compare methods for calculating
the remapping function matching the lineariza-
tion function, (CSFeDACLUM)1, for a given
set of luminance values of a display system.

CONCLUSIONS
Use of Visual Model for CSF

Fairly good models for the CSF (Barten and
Daly) exist, but they need to be expanded to
include multiple levels of surround, more gen-
eral types of stimuli, and different viewing
times. Although there is no single CSF that can
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represent all different visual tasks and different
clinical viewing conditions, we have derived a
single CSF that is representative of most clinical
conditions. This CSF function matches the CSF
previously recommended by Blume et al, and
also, the predictions from it are similar to our
most recent experimental results, although the
experimental results suggest less sensitivity over-
all, especially when the stimulus and its local
surround are significantly different in lumi-
nance from the overall surround to which the
eye is adapted. Still, we recommend using the
Barten or Daly models for the CSF part of the
linearization process. Work needs to be done in
comparing visual model-based CSF lineariza-
tions with existing default monitor configura-
tions for specific clinical tasks to evaluate
whether improvements in clinical performance
occur.

Display System Characteristics (DACLUM)

Current DAC:s are not sufficient, especially as
we go to higher luminance monitors. More
driving levels are required and, thus, more bits
in the DAC. For an optimal DAC luminance
distribution (ie, matching the CSF), ~10 bits
should be sufficient to eliminate quantization
artifacts and to allow step sizes of around one
contrast threshold. The distribution of lumi-
nance levels of the DAC should more closely
match the CSF of the human observer. Increas-
ing the number of available DDLs can compen-
sate somewhat for suboptimal DACLUM distri-
butions by providing more choices for the
linearization step. Work needs to be done
evaluating whether the increases in bits in DAC
and improved DAC luminance level distribu-
tions actually improve clinical performance in
observer experiments. Such improvements would
have to be traded off against the cost of manufac-
turing systems with larger numbers of DDLs
and better DAC distributions.

Calculation of Linearization Function

Ideally, the linearization would occur in the
choice of the DAC luminance distribution. If
further correction of the luminance distribution
is required, it can be accomplished by applying
the inverse of the CSFeDACLUM relationship
via a post remapping step. Several methods for
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this exist, but they do not attempt to minimize
the error in matching the desired luminance
values of the linearization function versus the
actual ones available on the DAC. We propose
an optimal solution to the linearization remap-
ping calculation that minimizes perceptual er-
ror in the linearization and determines the
achievable PDR of the display system. Lineariza-
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tions need to be evaluated to test the benefit of
different methods of calculating the lineariza-
tion remapping.
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