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Abstract. Let S be any set of N points in the plane and let DT(S) be the graph 
of the Delaunay triangulation of S. For all points a and b of S, let d(a, b) be the 
Euclidean distance from a to b and let DT(a, b) be the length of the shortest path 
in DT(S) from a to b. We show that there is a constant c (<((1 +v~)/2)Tr ~5.08) 
independent of S and N such that 

DT(a, b) 
- - ~ C .  
d(a,b) 

1. Introduction 

Let DLi(S) be the Delaunay triangulation of  S in the Li norm (i = 1, 2). Chew 
[Ch] shows that there exists a constant c~ such that the ratio of  shortest distances 
in DL~(S) to straight line (i.e., L2) distances is bounded above by cl where 
cl = ~ ~ 3.16 228. We extend this result here demonstrating a constant c2 such 
that the ratio of  shortest distances in DL2(S) to straight line distances is bounded 
above by c2=( ( l+v~) /2 )~ r~5 .08 .  The best-known lower bound on c2 is ~r/2 
and is also due to Chew. 

In his paper, Chew describes applications of  his (and our) result to problems 
of  motion planning, polygon visibility, and extensions of  Voronoi 
diagrams/Delaunay triangulations. Our focus is the derivation of  c2 and potential 
extensions to other problems involving distances in the plane. 

In what follows, we provide the definitions and lemmas necessary to prove 
our main result in Section 2; Section 3 contains the proofs. We conclude with 
some open problems. 

* This research was supported in part by an AT&T Bell Laboratories Scholarship, by NSF Grants 
DMC-8451214, CCR87-00917, and CCR85-05517, and by a grant from the IBM Corporation. 
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2. The Main Result  

We begin with (informal) definitions of  the Voronoi diagram and the Delaunay 
triangulation. The Voronoi diagram for a set S of N points in the plane is a 
partition of  the plane into regions, each containing exactly one point in S, such 
that, for each point p e S, every point within its corresponding region (denoted 
Vor(p)) is closer to p than to any other point of S. The boundaries of  these 
regions form a planar graph. The Delaunay triangulation of  S is the straight-line 
dual of  the Voronoi diagram for S; that is, we connect a pair of  points in S if 
and only if they share a Voronoi boundary. Under the standard assumption that 
no four points of S are cocircular, the Delaunay triangulation is indeed a 
triangulation [PS]; we denote its corresponding graph by DT(S). 

For the remainder of  this section, fix points a, b e S; we will construct a path 
in DT(S) that is not too long in relation to d(a, b). Assume for simplicity that 
a and b lie on the x-axis, with x(a)<x(b) (we denote the coordinates of a point 
q in the plane by x(q) and y(q) ,  respectively). We refer to members of  S 
alternatively as points or vertices, and to edges of  DT(S) as edges or line segments, 
as the context indicates. 

Our original idea for the path was simply to use the vertices a = b 0 ,  
b ~ , . . . ,  bm-~, bm= b corresponding to the sequence of Voronoi regions traversed 
by walking from a to b along the x-axis, as illustrated in Fig. 1, where m = 4 (in 
the case in which a Voronoi edge happens to lie on the x-axis somewhere between 
a and b, we--arbi trar i ly--choose that Voronoi region lying above, rather than 

\ 
Fig. i. The Voronoi diagram is shown in solid line, and the direct DT path between a and b in 
dotted line. 
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below, the x-axis). In general, we refer to the DT path constructed in this way 
between some z and z' in S as the direct DTpath  from z to z'. Let p~ denote the 
point on the x-axis that also lies on the boundary between Vor(bi_0 and Vor(b~), 
for i = 1, 2 , . . . ,  m. The definition of the Voronoi diagram immediately gives that 
p~ is the center of a circle C~ passing through b~_~ and b~ but containing no points 
of  S in its interior. 

Two simple properties of  direct DT paths are: 

Lemma I. x(bo)<-x(bl)<- "" "<-x(b,,,). 

Lemma 2. For all i, O<-i<-m, bi is contained within, or on the boundary of, 
circle(a, b) (by which we denote the circle with a and b diametrically opposed). 

Note in Fig. 1 that all the b~ happen to be in the same half-plane defined by 
the line connecting a and b (i.e., y(bi)>-O for all 0 - i - m ) .  In such cases, we 
say that the direct path between the two points is one-sided. One-sided paths are 
fortuitous for our purposes, because the ratio of  the path length to the Euclidean 
distance is at most ~ /2 ;  this is a simple consequence of  Lemma 1 above and the 
following: 

Lemma 3. Let D~, D 2 , . . .  , O k be circles all centered on the x-axis such that 
D =[.-J~<-~<-k D~ is connected. Then boundary(D) has length at most 7r. (xr -xO,  
where xl and xr are the least and grea test x.coordinates of  D, respectively (see Fig. 2). 

Lemma 3 applies to the one-sided paths because the half of  boundary(C) 
(where C is defined as I..J~<_k_~,, Ck) that lies above the x-axis has length at least 
as great as the path itself (because the b~ are monotonic in x). 

The trouble with this approach is that the path is not necessarily even close 
to being one-sided; the path may zig-zag across the x-axis (as is illustrated in 
Fig. 3) O(N)  times. 

Our modified approach, then, is to try to stay above the x-axis. Should the 
direct path dip below the x-axis, we determine how costly the dip will be. If  
dipping below is not too expensive (in a sense defined below) then we follow 
the direct path below the x-axis and then back up. Otherwise, we construct a 
shortcut between the two points above the x-axis. Most of the proof consists of  
showing that the shortcut is not too long. The exact path we take is made more 
precise in the proof  of  the following: 

Fig. 2. Illustration for Lemma 3. 
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~-o~is {...-"U/i ~ / ~ I'~ ...N[ V ""....~5:b 
O: bo\ 

Fig. 3. A direct DT path that is not one-sided. 

Theorem. There exists a DT path from a to b of length 

--<((1 +V'5)/2)Tr- d(a, b). 

Proof. We present an algorithm for constructing a DT path from a = bo to b = bin, 
and then analyze the length of  the path it produces. Assume that the path so far 
has brought us to some b~ such that (1) y(b,)>O (initially, i = 0 ) ,  (2) i<m 
(meaning we are not finished), and (3) y(b~+l)< 0. Thus the direct path would 
dip below the x-axis for a while after b~. Let j be the least number greater than 
i such that y(bj)>-0 (e.g., in Fig. 4, if i = 2 then j =4).  Let T denote the path 
along the boundary of  C clockwise from bi to bj. Let w denote the length of 
the projection of  T onto the x-axis (thus w=x(bj)-x(b~)).  Define h =  
min{y(q): q lies on T}. Now if h < w/4 then continue along the direct path to bj 

Fig. 4. An upper bound on the length of the direct DT path. 
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Fig. 5. The shortcut from b, to bj. Here k =2 .  

(i.e., use edges bibi+~, b~+tb,+2,..., bj_tbj). Otherwise we take a shortcut  as fol- 
lows. Construct  the lower convex hull b~ = Zo, z~, z 2 , . . . ,  z, = bj of  the set 

{q c S: x(bi) <- x(q) <- x(bj) and y(q) >-- 0 and q lies under  b~bj} 

(see Fig. 5). Note  that  these convex hull edges are certainly not on the direct D T  
path  f rom a to b. Now the shortcut  consists o f  taking the direct D T  path  f rom 
Zk to Zk+~ for  each 0 -  < k-  < - n -  1. The key fact (proved in Section 3) is: 

Lemma 4. Let ZkZg+I be an edge of the lower convex hull described above. Then 
the direct D T  path from Zk tO zk+~ is one-sided. 

Next we analyze the length of  the pa th  p roduced  by this algori thm. When 
proceeding f rom b~ to bj, let t denote  the length of  T. I f  h <- w/4 then let qo be 
the point  o f  T with least y-value  (see Fig. 6), let t~ denote  the length of  the port ion 
o f  T f rom bi to qo, and tj the length of  the por t ion of  T f rom qo to bj (thus 
h + tj = t). Let w~ and wj denote  the lengths of  the projections of  those two port ions 
o f  T, respectively (thus w~ + w~ = w). Then the pa th  we take (i.e., no shortcuts)  
has length at most  

t +  2(y(b~) + y(b;)) = t + 2(2h + (y(b,)  - h) + (y(bj) - h)) 

< - - t + 2 ( 2 + ( Y ( b , ) - h ) + ( y ( b j ) - h ) )  

= t + 2 ( 2 + ( Y ( b , ) - h ) + - ~ + ( y ( b i ) - h ) )  

< - t + 2 ( ~ t , + - - ~  tj) = t(1 +vr5). 
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Fig. 6. Analyzing the path length when the shortcut is not  taken. 

The last inequality follows from the (easily proved) fact that 

2 2 

whenever a and b are the legs of a right triangle with hypotenuse c. 
On the other hand, if h > w/4 then we take the shortcut, which has length at most 

n - I  

k=O 
length of one-sided path from z k to Zk+ 1 

<V"-~ d(Zk, Zk-OTr/2 <- tTr/2 (by Lemma 3). Hence in (by Lemma 4) which is -~k=0 
either case, the distance we travel in getting from b~ to bj is at most (1 +~/5)t. 
Therefore summing over all such trips b~ to bj as well as the trips (for which we 
travel at most t units) where the direct DT path from a to b stays completely 
above the x-axis, we get (by Lemma 3) a total path length of  at most 
d(a, b)((1 + q"5)/2)n'. [] 

3. Proofs of  the Lemmas 

Proof o f  Lemma I. The perpendicular bisector of  b~ and b~+~ contains p~. 
Point b~+~ lies to the right of  this bisector, and b~ lies to the left; hence x(b~) < - 
x(  b~+ O. [] 

Proof o f  Lemma 2. Let c denote the midpoint of  segment ab; let k be such that 
c lies in the Voronoi region of  bk. Then 

d(bo, c)>-d(bt ,  c )> " " >-d(bk, c) 
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~ CI4 : x r 

Dj 
Fig. 7. Il lustration for  the p roof  of  Lemma 3. 

and 

d(bk, c)<--d(bk+l, c)<-... <-d(b,,,, c). [] 

Proof of Lemma 3. By induction on k. The claim is easy if k = l ;  so let k>-2 
and assume it for k - 1 .  Let q~ and q4 denote the leftmost and rightmost points 
of  Dk, respectively (see Fig. 7), and assume without loss of  generality that 
q4 = x,. Let q2 be the rightmost point at which Dk intersects another circle Dj 
(thus j < k); let q3 be the rightmost point of  D~. We can assume that Dk does 
not entirely contain any circle Di (i ~ k), since otherwise D~ would not contribute 
to boundary(D) and hence the induction would be trivial. Denote by a~ (a:)  the 
length of  the arc on circle Dk clockwise from q~ to q2 (resp. q2 to q4). Let a3 be 
the length of the arc on circle Dj clockwise from q2 to q3. Finally, let a4 = 
(7r/2)(x(q3)-x(ql)) and let a5 = (~r/2)(x(q4)-x(q3)). Then a simple convexity 
argument shows that 

Also, we have 

Hence 

O~l --}" 0~3 :>" 0~4. 

a4"~  Or5 = O~ 1 "~ Ot 2 . 

O/l -J¢- Of 3 -J¢- O/5 ~>" 0~4-~- ~5 ~-- ~ i  "~ Of 2, 

implying a 3 + a 5 ~ a 2. Therefore, denoting the length of the boundary of  D by 
bd(D),  we have 

bd(D)<-bd(circle(q3, q4)u1~yk_ D,) 
~--bd(circle(q,, q4))+bd(,~_Uk_ D, ) 

1r(Xr- x(q3)) + ~r(x(q3) - x,) (by the inductive hypothesis) 

"¢:: 'IT(X r --  XI). i-1 
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Proof o f  Lemma 4. By Lemma 2, the direct DT path from Zk to Zk+~ lies entirely 
within circle(Zk, zk+l). We now show that there are no points of  S within the 
lower semicircle of  circle(Zk, zk+~), so the path must be one-sided. 

Let q be an arbitrary point in this lower semicircle; we must show q ~ S. If  
x(b~) <.x(q)<-x(b~) and y ( q ) > - - h  (i.e., q lies in region R~ in Fig. 5) then we 
claim q ~ S. To see this, note that if y(q)>- h then it lies outside the lower convex 
hull; whereas if - h  < y ( q ) <  h then q lies in the interior of I,_J~_~k~ j Cko 

We next show that y ( q )  > - h  (that is, q ~ R2). Assume without loss of  generality 
that y(Zk)<--y(Zk+O. Since Zk C S it must lie directly above some point of T, since 
the area below T and above the x-axis is contained in C and therefore contains 
no members of $. Therefore y(zk)  >- h > w/4 .  Let z' be the point with coordinates 
(X(Zk+~), y(zk)) .  Let c and c' denote the midpoints of  segments ZkZk+~ and zkz', 
respectively. Then y ( c ' ) > w / 4 .  That qecirc le(zk ,  z') follows from q e  
circle(zk, Zk+~) and y (q )  <- y(zk)  = y(z ' ) .  Furthermore, X(Zk+~) -- X(Zk) <-- W, since 
by extending ZkZk+~ on both sides we encounter points on T and since T is 
connected (and hence the projection of T onto the x-axis is at least as long as 
the projection of ZkZk+l onto the x-axis). Therefore radius(circle(Zk, z'))----- w/2.  
Hence 

y(  q ) >- y(  c') - radius(circte(zk, z')) > w / 4 -- w / 2 = - w / 4. 

Note that x(q)>-x(b~) (that is q~ R3), because of  our assumption y(Zk) < -- 
y(zk+O. 

Finally, we assume x ( q ) >  x(bj)  (hence q ~ R,). We show that q lies in the 
interior of  Cj, implying q ~ $. Let x~ be the leftmost point of intersection of  circle 
Cj with the line y = h. Let xr be the rightmost point of intersection of  Cj with 
the line y = - h .  Let l denote the line that passes through Zk+~ perpendicular to 
segment ZkZk+t, and let l' be the line containing bj and xr. Note that both i and 
l' must have negative slopes. Clearly, the entire circle (Zk, Zk+~) lies below l and 
in particular so does q. We claim that this implies that q lies below t' as well. 
To see this, first note that our assumption y(Zk)<-y(Zk+~) implies y(Zk+l)<--y(bj), 
and hence line l intersects the line x =x(b j )  below bj. Therefore it suffices to 
show that slope(1)<-slope(F) (recall that both are negative). The monotonicity 
of  slopes in the lower convex hull gives slope(ZkZk+t)<-slope(xlbj). Therefore 
since l and l' are perpendicular to ZkZk+~ and xtb~, respectively (the latter is 
because x~ and xr are diametrically opposed on Cj), we have slope(i)-< slope(/'). 
Thus q indeed lies below i'; hence since q is in R4 it must also be in Cj and 
therefore not in S. [] 

4. Related Problems 

There are many interesting problems related to that solved here. For example, 
Raghavan [Ra] suggests that our results extend to a special case problem in 
3-space. He conjectures that if S is a set of  points on the unit sphere, there is a 
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constant c such that 

dn(a,b) 
- - < c ,  
d(a,b) 

where dH is the distance along edges of the convex hull and d is the (three- 
dimensional) Euclidean distance. 

The generalization of our result to arbitrary point sets in 3-space and their 
Delaunay graphs remains open. 

In another direction, Feder and others [Fe] have shown that for each k-> 7 
there is a constant c such that, for each finite set S of  points in the plane, there 
is a graph G with vertices corresponding to these points, and the following 
properties: 

(1) Each vertex in G has degree at most k. 
(2) de(a, b)/d(a, b) < c, where de is the distance along edges of G. 

Extensions to the cases k = 5 and 6 have been proposed by others. It is not 
difficult to show that no such constant exists for k = 2. What is the minimum k 
for which such a result is possible? 

Acknowledgment 

The authors thank Arthur Watson for his useful comments during this research. 

References 

[Ch] P. Chew, There is a planar graph almost as good as the complete graph, Proceedings of the 
Second Symposium on Computational Geometry, Yorktown Heights, NY, 1986, pp. 169-177. 

[Fe] T. Feder, personal communication, 1988. 
[PS] F.P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, 

New York, 1985. 
IRa] P. Raghavan, personal communication, 1987. 

Received October 28, 1987, and in revised form April 8, 1988. 


