
Machine Learning, 5, 197-227 (1990)
© 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Strength of Weak Learnability

ROBERT E. SCHAPIRE (rs@theory.lcs.mit.edu)
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning
algorithm in the distribution-free (PAC) learning model. A concept class is learnable (or strongly learnable) if,
given access to a Source of examples of the unknown concept, the learner with high probability is able to output
an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly
learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In
this paper, it is shown that these two notions of learnability are equivalent.

A method is described for converting a weak learning algorithm into one that achieves arbitrarily high accuracy.
This construction may have practical applications as a tool for efficiently converting a mediocre learning algorithm
into one that performs extremely well. In addition, the construction has some interesting theoretical consequences,
including a set of general upper bounds on the complexity of any strong learning algorithm as a function of the
allowed error e.

Keywords. Machine learning, learning from examples, learnability theory, PAC learning, polynomial-time
identification.

I. Introduction

Since Valiant's pioneering paper (1984), interest has flourished in the so-called distribution-
free orprobably approximately correct (PAC) model of learning. In this model, the learner
tries to identify an unknown concept based on randomly chosen examples of the concept.
Examples are chosen according to a fixed but unknown and arbitrary distribution on the
space of instances. The learner's task is to find an hypothesis or prediction rule of his own

that correctly classifies new instances as positive or negative examples of the concept. With
high probability, the hypothesis must be correct for all but an arbitrarily small fraction
of the instances.

Often, the inference task includes a requirement that the output hypothesis be of a specified
form. In this paper, however, we will instead be concerned with a representation-independent

model of learning in which the learner may output any hypothesis that can be used to classify
instances in polynomial time.

A class of concepts is learnable (or strongly learnable) if there exists a polynomial-time
algorithm that achieves low error with high confidence for all concepts in the class. A
weaker model of learnability, called weak learnability, drops the requirement that the learner
be able to achieve arbitrarily high accuracy; a weak learning algorithm need only output
an hypothesis that performs slightly better (by an inverse polynomial) than random guessing.
The notion of weak learnability was introduced by Kearns and Valiant (1988; 1989) who
left open the question of whether the notions of strong and weak learnability are equivalent.
This question was termed the hypothesis boosting problem since showing the notions are
equivalent requires a method for boosting the low accuracy of a weak learning algorithm's
hypotheses.

198 R.E. SCHAPIRE

Kearns (1988), considering the hypothesis boosting problem, gives a convincing argument
discrediting the natural approach of trying to boost the accuracy of a weak learning algorithm
by running the procedure many times and taking the "majority vote" of the output hypoth-
eses. Also, Kearns and Valiant (1989) show that, under a uniform distribution on the instance
space, monotone Boolean functions are weakly, but not strongly, learnable. This shows
that strong and weak learnability are not equivalent when certain restrictions are placed
on the instance space distribution. Thus, it did not seem implausible that the strong and
weak learning models would prove to be inequivalent for unrestricted distributions as well.

Nevertheless, in this paper, the hypothesis boosting question is answered in the affirma-
tive. The main result is a proof of the perhaps surprising equivalence of strong and weak
learnability.

This result may have significant applications as a tool for proving that a concept class
is learnable since, in the future, it will suffice to find an algorithm correct on only, say,
51% of the instances (for all distributions). Alternatively, in its negative contmpositive form,
the result says that if a concept class cannot be learned with accuracy 99.9 %, then we cannot
hope to do even slightly better than guessing on the class (for some distribution).

The proof presented here is constructive; an explicit method is described for directly
converting a weak learning algorithm into one that achieves arbitrary accuracy. The con-
struction uses filtering to modify the distribution of examples in such a way as to force
the weak learning algorithm to focus on the harder-to-learn parts of the distribution. Thus,
the distribution-free nature of the learning model is fully exploited.

An immediate corollary of the main result is the equivalence of strong and group learna-
bility. A group-learning algorithm need only output an hypothesis capable of classifying
large groups of instances, all of which are either positive or negative. The notion of group
learnability was considered by Kearns, Li, Pitt and Valiant (1987), and was shown to be
equivalent to weak learnability by Kearns and Valiant (1989). The result also extends those
of Haussler, Kearns, Littlestone and Warmuth (1988) which prove the equivalence of numer-
ous relaxations and variations on the basic PAC-learning model; both weak and group learna-
bility are added to this class of equivalent learning models. The relevance of the main result
to a number of other learning models is also considered in this paper.

An interesting and unexpected consequence of the construction is a proof that any strong
learning algorithm outputting hypotheses whose length (and thus whose time to evaluate)
depends on the allowed error e can be modified to output hypotheses of length only poly-
nomial in log(I/e). Thus, any learning algorithm can be converted into one whose ouptut
hypotheses do not become significantly more complex as the error tolerance is lowered.

Put in other terms, this bound implies that a sequence of labeled examples of a learnable
concept can, in a sense, be efficiently compressed into a far more compact form--that is,
into a rule or hypothesis consistent with the labels of the examples. In particular, it is shown
that a sample of size m can be compressed into a rule of size only poly-logarithmic in
m. In fact, in the discrete case, the size of the output hypothesis is entirely independent
of m. This provides a partial converse to Occam's Razor, a result of Blumer, Ehrenfeucht,
Haussler and Warmuth (1987) stating that the existence of such a compression algorithm
implies the learnability of the concept class. This also complements the results of Board
and Pitt (1990) who also provide a partial converse to Occam's Razor, but of a somewhat
different flavor. Finally, this result yields a strong bound on the sample size needed to learn
a discrete concept class.

THE STRENGTH OF WEAK LEARNABILITY 199

This bound on the size of the output hypothesis also implies the hardness of learning
any concept class not evaluatable by a family of small circuits. For example, this shows
that pattern languages--a class of languages considered previously by Angluin (1980) and
others--are unlearnable assuming only that NP/poly ;~ P/poly. This is the first representation-
independent hardness result not based on cryptographic assumptions. The bound also shows
that, for any function not computable by polynomial-size circuits, there exists a distribution
on the function's domain over which the function cannot be even roughly approximated
by a family of small circuits.

In addition to the bound on hypothesis size, the construction implies a set of general
bounds on the dependence on e of the time, sample and space complexity needed to efficiently
learn any learnable concept class. Most surprising is a proof that there exists for every
learnable concept class an efficient algorithm requiring space only poly-logarithmic in 1/e.
Because the size of the sample needed to learn with this accuracy is in general f~(1/e), this
means, for example, that far less space is required to learn than would be necessary to
store the entire sample. Since most of the known learning algorithms work in exactly this
manner--that is, by storing a large sample and finding an hypothesis consistent with it--
this implies a dramatic savings of memory for a whole class of algorithms (though possibly
at the cost of requiring a larger sample).

Such general complexity bounds have implications for the on-line learning model as well.
In this model, the learner is presented one instance at a time in a series of trials. As each
is received, the learner tries to predict the true classification of the new instance, attempting
to minimize the number of mistakes, or prediction errors.

Translating the bounds described above into the on-line model, it is shown that, for every
learnable concept class, there exists an on-line algorithm whose space requirements are
quite modest in comparison to the number of examples seen so far. In particular, the space
needed on the first m trials is only poly-logarithmic in m. Such space efficient on-line algo-
rithms are of particular interest because they capture the notion of an incremental algorithm
forced by its limited memory to explicitly generalize or abstract from the data observed.
Also, these results on the space-efficiency of batch and on-line algorithms extend the work
of others interested in this problem, including Boucheron and Sallantin (1988), Floyd (1989),
and Haussler (1988). In particular, these results solve an open problem proposed by Haussler,
Littlestone and Warmuth (1987).

An interesting bound is also derived on the expected number of mistakes made on the
first m trials. It is shown that, if a concept class is learnable, then there exists an on-line
algorithm for the class for which this expectation is bounded by a polynomial in log m.
Thus, for large m, we expect an extremely small fraction of the first m predictions to be
incorrect. This result answers another open question given by Haussler, Littlestone and
Warmuth (1987), and significantly improves a similar bound given in their paper (as well
as their paper with Kearns (1988)) of m s for some constant ot < 1.

2. Preliminaries

We begin with a description of the distribution-free learning model. A concept c is a Boolean
function on some domain of instances. A concept class C is a family of concepts. Often,
C is decomposed into subclasses Cn indexed by a parameter n. That is, C = Un>_lCn,

200 R.E. SCHAPIRE

and all the concepts in Cn have a common domain Xn. We assume each instance in Xn has
encoded length bounded by a polynomial in n, and we let X = On_>lXn. Also, we associate
with each concept c its size s, typically a measure of the length of c's representation under
some encoding scheme on the concepts in C.

For example, the concept class C might consist of all functions computed by Boolean
formulas. In this case, Cn is the set of all functions computed by a Boolean formula on
n variables, Xn is the set {0, 1} n of all assignments to the n variables, and the size of a
concept c in C is the length of the shortest Boolean formula that computes the function c.

The learner is assumed to have access to a source EX of examples. Each time oracle
EX is called, one instance is randomly and independently chosen from X n according to
some fixed but unknown and arbitrary distribution D. The oracle returns the chosen instance
v, along with a label indicating the value c(v) of the instance under the unknown target con-
cept c ~Cn. Such a labeled instance is called an example. We assume EX runs in unit time.

Given access to EX, the learning algorithm runs for a time and finally outputs an hypothesis
h, a prediction rule on X,. In this paper, we make no restrictions on h other than that there
exist a (possibly probabilistic) polynomial time algorithm that, given h and an instance v,
computes h(v), h's prediction on v.

We write Prv~D[Tr(v)] to indicate the probability of predicate a- holding on instances v
drawn from Xn according to distribution D. To accommodate probabilistic hypotheses, we
will find it useful to regard a-(v) as a Bernoulli random variable. For example, Pr[h(v) ;~
c(v)] is the chance that hypothesis h (which may be randomized) will misclassify some
particular instance v. In contrast, the quantity PrveD[h(v) ~ c(v)] is the probability that
h will misclassify an instance v chosen at random according to distribution D. Note that
this last probability is taken over both the random choice of v, and any random bits used by h.

In general, assuming independence, we have

Pr [Tr(v)] = ~ D(v) Pr[Tr(v)l
vED vEXn

where D(v) is the probability of instance v being chosen under D. (Technically, this formula
is valid only when X n is discrete. To handle general domains, the summation would need
to be replaced by an appropriate integral, and D by a probability measure on the domain.
To simplify the presentation, we will assume that Xn is discrete, and omit the extension
of these results to general domains; this extension simply mimics the discrete case.)

The probability Prv~D[h(v) ~ c(v)] is called the error of h on c under D; if the error
is no more than e, then we say h is e-close to the target concept c under D. The quantity
Prv~D[h(v) = c(v)] is the accuracy of h on c under D.

We say that a concept class C is learnable, or strongly learnable, if there exists an algo-
rithm A such that for all n -> 1, for all target concepts c ~ Cn, for all distributions D on
Xn, and for all 0 < e, 6 -< 1, algorithm A, given parameters n, e, 6, the size s of c, and
access to oracle EX, runs in time polynomial in n, s, 1/e and 1/6, and outputs an hypothesis
h that with probability at least 1' - 6 is e-close to c under D. There are many other equivalent
notions of learnability, including polynomial predictability (Haussler, Kearns, Littlestone
and Warmuth, 1988). Also, note that other authors have sometimes used the term learnable
to mean something slightly different.

T H E S T R E N G T H O F W E A K L E A R N A B I L I T Y 201

Kearns and Valiant (1989) introduced a weaker form of learnability in which the error
e cannot necessarily be made arbitrarily small. A concept class C is weakly learnable if
there exists a polynomial p and an algorithm A such that for all n -> 1, for all target con-
cepts c E Cn, for all distributions D on Xn, and for all 0 < 6 -< 1, algorithm A, given
parameters n, 6, the size s of c, and access to oracle EX, runs in time polynomial in n, s
and 1/6, and outputs an hypothesis h that with probability at least 1 - 6 is (1/2 - 1/p(n, s))-
close to c under D. In other words, a weak learning algorithm produces a prediction rule
that performs just slightly better than random guessing.

3. The equivalence of strong and weak learnability

The main result of this paper is a proof that strong and weak learnability are equivalent
notions.

THEOREM 1. A concept class C is weakly learnable if and only if it is strongly learnable.

That strong learnability implies weak learnability is trivial. The remainder of this section
is devoted to a proof of the converse. We assume then that some concept class C is weakly
learnable and show how to build a strong learning algorithm around a weak one.

We begin with a description of a technique by which the accuracy of any algorithm can
be boosted by a small but significant amount. Later, we will show how this mechanism
can be applied recursively to make the error arbitrarily small.

3.1. The hypothesis boosting mechanism

Let A be an algorithm that produces with high-probability an hypothesis a-close to the
target concept c. We sketch an algorithm A' that simulates A on three different distributions,
and outputs an hypothesis significantly closer to c.

Let EX be the given examples oracle, and let D be the distribution on Xn induced by
EX. The algorithm A' begins by simulating A on the original distribution D1 -- D, using
the given oracle EX1 -- EX. Let hi be the hypothesis output by A.

Intuitively, A has found some weak advantage on the original distribution; this advantage
is expressed by hi. To force A to learn more about the "harder" parts of the distribution,
we must somehow destroy this advantage. To do so, A' creates a new distribution D2 under
which an instance chosen according to D2 has a roughly equal chance of being correctly
or incorrectly classified by h~. The distribution D2 is simulated by filtering the examples
chosen according to D by EX. To simulate D2, a new examples oracle EX2 is constructed.
When asked for an instance, EX2 first flips a fair coin: if the result is heads, then EX2
requests examples from EX until one is chosen for which hi(v) = c(v); otherwise, EX2
waits for an instance to be chosen for which h~(v) ~ c(v). (Later we show how to prevent
EX2 from having to wait too long in either of these loops for a desired instance). The algo-
rithm A is again simulated, this time providing A with examples chosen by EX2 according
to D2. Let h2 be the output hypothesis.

202 R.E. SCHAPIRE

Yj

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5

Figure 1. A graph of the function g(x) = 3x 2 - 2x 3.

Finally, D3 is constructed by filtering from D those instances on which hi and h2 agree.
That is, a third oracle EX3 simulates the choice of an instance according to D3 by requesting
instances from EX until one is found for which hi(v) ~ h2(v). (Again, we will later show
how to limit the time spent waiting in this loop for a desired instance.) For a third time,
algorithm A is simulated with examples drawn this time by EX3, producing hypothesis h3.

At last, A' outputs its hypothesis h: given an instance v, if h~(v) = hz(v) then h predicts
the agreed upon value; otherwise, h predicts h3(v). (In other words, h takes the "majority
vote" of h~, h2 and h3.) Later, we show that h's error is bounded by g(a) - 3or 2 - 2a a.
This quantity is significantly smaller than the original error or, as can be seen from its
graph depicted in Figure 1. (The solid curve is the function g, and, for comparison, the
dotted line shows a graph of the identity function.)

3.2. A strong learning algorithm

An idea that follows naturally is to treat the previously described procedure as a subroutine
for recursively boosting the accuracy of weaker hypotheses. The procedure is given a desired
error bound c and a confidence parameter ~, and constructs an e-close hypothesis from
weaker, recursively computed hypotheses. If c >_ 1/2 - 1/p(n, s) then an assumed weak
learning algorithm can be used to find the desired hypothesis; otherwise, an c-close hypoth-
esis is computed recursively by calling the subroutine with e set to g-l(e).

Unfortunately, this scheme by itself does not quite work due to a technical difficulty:
because of the way EX2 and EX3 are constructed, examples may be required from a very
small portion of the original distribution. If this happens, the time spent waiting for an
example to be chosen from this region may be great. Nevertheless, we will see that this

THE STRENGTH OF WEAK LEARNABILITY 203

Learn(e, ~, EX)

Input: error parameter e
confidence parameter 5
examples oracle EX
(implicit) size parameters s and n

Return: hypothesis h that is e-close to the target concept c with probability > i - 5

Procedure:
i f e >_ 1 / 2 - 1/p(n, s) t h e n r e t u r n NeakLearn(5, EX)
a ~ - g - ' (~)

EX1 e- EX
hi +-- Learn(a , ~/5, EX1)
rl *- e/3
let &a be an estimate of el = PrveD[hl(v) ~ c(v)]:

choose a sample sufficiently large that lal - gql -< rl with probability > 1 - 5/5
i f ~x _< e - ~-1 t h e n r e t u r n hi

d e f u n EX20
{ flip coin

if heads, r e t u r n the first instance v from EX for which ha(v) = c(v)
else r e t u r n the first instance v from EX for which hi(v) ¢ c(v) }

h2 ~-- Learn(a , 5/5, EX2)
~2 ~ - (1 - 2 a) e / S
let ~ be an estimate of e = PrvcD[h2(v) # c(v)]:

choose a sample sufficiently large that]e - ~1 < T2 with probability > 1 - 5/5
if $ < e - r2 t h e n r e t u r n h2

d e f u n EX30
{ r e t u r n the first instance v from EX for which hi(v) ~ h2(v) }

h3 e-- Learn(a , ~/5, EX3)

d e f u n h(v)
{ ~1 ~- h i (v) , b~ ~ h~(,,)

i f bx = b2 t h e n r e t u r n bl
else r e t u r n h3(v) }

r e t u r n h

Figure 2. A strong learning algorithm Learn.

difficulty can be overcome by explicit ly checking that the errors of hypotheses h~ and h 2
on D are no t too small.

Figure 2 shows a detailed sketch of the resul t ing strong learning a lgor i thm Lea rn . The
procedure takes an er ror parameter e and a conf idence parameter 6, and is also provided
with an examples oracle EX. The procedure is required to re turn an hypothesis whose
error is at mos t e with probabi l i ty at least 1 - & In the figure, p is a po lynomia l and
Weak Lea r n(6, EX) is an assumed weak learning procedure that outputs an hypothesis (1/2

- 1/p(n, s))-close to the target concept c with probabi l i ty at least 1 - 6. As above, g(o0

204 R.E. SCHAPIRE

is the function 3ix 2 - - 2c¢ 3, and the variable c~ is set to the value g- l (e) . Also, the quantities
a l and ~ are estimates of the errors of hi and h 2 under the given distribution D. These
estimates are made with error tolerances 7-1 and 7- 2 (defined in the figure), and are computed
in the obvious manner based on samples drawn from EX; the required size of these samples
can be determined, for instance, using Chernoff bounds. The parameters s and n are assumed
to be known globally.

Note that Lea r n is a procedure taking as one of its inputs a function (EX) and returning
as output another function (h, a hypothesis, which is treated like a procedure). Furthermore,
to simulate new example oracles, Lea rn must have a means of dynamical ly defining new
procedures (as is allowed, for instance, by most Lisp-l ike languages). Therefore, in the
figure, we have used the somewhat nonstandard keyword defun to denote the definition
of a new function; its syntax calls for a name for the procedure, followed by a parenthesized
list of arguments, and the body indented in braces. Static scoping is assumed.

Lea r n works by recursively boosting the accuracy of its hypotheses. Lea r n typically
calls itself three times using the three simulated example oracles described in the preceding
section. On each recursive call, the required error bound of the constructed hypotheses
comes closer to 1/2; when this bound reaches 1/2 - 1/p(n, s), the weak learning algorithm
WeakLea rn can be used.

The procedure takes measures to limit the run t ime of the simulated oracles it provides
on recursive calls. When Lea r n calls i tself a second time to find h2, the expected number
of iterations of EX2 to find an example depends on the error of hi, which is estimated by
~1. I f hi already has the desired accuracy 1 - e, then there is no need to find h 2 and ha
since h~ is a sufficiently good hypothesis; otherwise, i f a l = fl(e), then it can be shown
t h a t E X 2 will not loop too long to find an instance. Similarly, when Lea rn calls itself to
find ha, the expected number of iterations of EX3 depends on how often hi and h E disagree,
which we will see is in turn a function of the error of h 2 o n the original distribution D.
I f this error e (which is estimated by ~ is small, then h E is a good hypothesis and is returned
by Lea rn . Otherwise, it wil l be shown that EX3 also will not run for too long.

3.3. Correctness

We show in this section that the algori thm is correct in the following sense:

THEOREM 2. For 0 < e < 1/2 and for 0 < 6 --< 1, the hypothesis returned by calling
Lea rn(e, 6, EX) is e-close to the target concept with probabil i ty at least 1 - 6.

Proof. In proving this theorem, we will find it useful to assume that nothing "goes wrong"
throughout the execution of Lea r n. More specifically, we will say that Lea r n has a good
run i f every hypothesis returned by WeakLea rn is indeed (1/2 - 1/p(n, s))-close to the
target concept, and i f every statistical estimate (i.e., of the quantities a l and e) is obtained
with the required accuracy. We will then argue inductively on the depth of the recursion
that i f Lea rn has a good run then the output hypothesis is e-close to the target concept,
and furthermore, that the probabili ty of a good run is at least 1 - & Together, these facts
clearly imply the theorem's statement.

THE STRENGTH OF WEAK LEARNABILITY 205

The base case that e _> 1/2 - 1/p(n, s) is tr ivially handled using our assumptions about
Weakkearn.

In the general case, by inductive hypothesis, each of the three (or fewer) recursive calls
to Lea rn are good runs with probabil i ty at least 1 - 6/5. Moreover, each of the estimates
a l and ~ has the desired accuracy with probabil i ty at least 1 - 6/5. Thus, the chance of
a good run is at least the chance that all five of these events occur, which is at least 1 - 6.

It remains then only to show that on a good run the output hypothesis has error at most e.
An easy special case is that fil or $ is found to be smaller than e - r~ or e - r2, respec-

tively. In either case, it follows immediately, due to the accuracy with which a~ and e are
assumed to have been estimated, that the returned hypothesis is e-close to the target concept.

Otherwise, in the general case, all three sub-hypotheses must be found and combined.
Let a i be the error of h i under D i. Here, D is the distribution of the provided oracle EX,
and D i is the distribution induced by oracle E X i on the ith recursive call (i = 1, 2, 3).
By inductive hypothesis, each a i <_ or.

In the special case that all hypotheses are deterministic, the distributions D1 and D2 can
be depicted schematically as shown in Figure 3. The figure shows the portion of each distribu-
tion on which the hypotheses h~ and h2 agree with the target concept c. For each distribu-
tion, the top crosshatched bar represents the relative fraction of the instance space on which
hi agrees with c; the bot tom striped bar represents those instances on which h2 agrees with
c. Although only valid for deterministic hypotheses, this figure may be helpful for motivating
one's intuition in what follows.

Let pi(v) = Pr[hi(v) # c(v)] be the chance that some fixed instance v is misclassified
by h i . (Recall that hypotheses may be randomized, and therefore it is necessary to consider
the probabil i ty that a particular fixed instance is misclassified.) Similarly, let q(v) = Pr[h~(v)
h2(v)] be the chance that v is classified differently by hx and h2. Also define w, x, y,
and z as follows:

I
I

I

y

.., I S I

D1

D2

Figure 3. The distributions D1 and D 2.

~ h2=c

206 R.E. SCHAPIRE

w = Pr[h2(v) ~ hi(v) = c(v)]
vED

x = Pr[hl(V) = h2(v) = c(v)l
vED

y = Pr [h l (v) ~ h2(v) = c(v)l
v~D

z = Pr(h l (v) = h2(v) ;~ c(v)]
vED

Clearly,

w + x = Pr[hl(V) = c(v)] = 1 - a l ,
v~D

(1)

and since c, h~ and h2 are Boolean,

y + z = Pr[hl(V) ;~ c(v)l = al . (2)
v~D

In terms of these variables, we can express explicit ly the chance that E X i returns in-
stance v:

DI(V) = D(v) (3)

O(v) ~-pl(v) -t- 1 -p,(v)_-~
D2(v) = ~ t._ a~ 1 - - ~ ~) (4)

D 3 (v) _ D (v) q (v) (5)
w + y

Equat ion (3) is trivial. To see that Equat ion (4) holds, note that the chance that the init ial
coin flip comes up tails is 1/2, and the chance that instance v is the first instance misclassified
by hi is D(v)p~(v)/a~. The case that the coin comes up heads is handled in a similar fashion,
as is the derivat ion of Equat ion (5).

F r o m Equat ion (4), we have that

1 - a2 = ~ Dz(v)(1 - pz(v))
veX,

1
- 211vc~x ~ D(v)pl(v)(1 - pz(v))+ 2 (1 - al)v~Xn D(v)(1 - p l (v)) (1 - p2(v))

y + z (6)
2al 2(1 -- al)

THE STRENGTH OF WEAK LEARNABILITY 207

(Note that Equat ion (6) could also have been der ived from Figure 3 in the case of deter-
minis t ic hypotheses: i fB is as shown in the figure, then it is no t hard to see that y = 2alB
and x = 2(1 - al)(1 - a2 - /3). These imply Equat ion (6).)

Combin ing Equat ions (1), (2) and (6), we see that the values of w and z can be solved
for and wri t ten explicit ly in terms of y, a l and a2:

w = (2a2 - 1)(1 - a l) + y(1 - a ,)
a l

Z = a l - - y

Using these values and Equat ion (5), we are f inal ly ready to compute the error of the out-
put hypothesis h:

Pr[h(v) ;e c(v)] = Pr [(h , (v) = h2(v) ;~ c(v)) v (h,(v) ~ h2(v) A h3(v) ~ c(v))]
rED vED

= Z + ~.~ D(v)q(v)p3(v)
v E X n

= z + ~ (w + y)D3(v)p3(v)
v ~ X n

= z + aa(w + y)

<- z + ce(w + y)

= o t (2 a = - 1) (1 - a ,) + a , + y (o t - a ,)
a l

--< c~(2a2 - 1)(1 - a l) + ot

_< ~x(2ot - 1)(1 - oz) + ot = 3or 2 - 2or 3 = g(oO = e

as desired. The inequali t ies here follow from the facts that each ai - o~ < 1/2, and that,
by Equat ion (2), y _< a l-

This completes the proof. •

3.4. Analysis

In this section, we argue that Lea rn runs in po lynomia l time. Here and throughout this
section, unless stated otherwise, po lynomia l refers to po lynomia l in n, s, 1/e and 1/6. Our
approach wil l be first to derive a b o u n d on the expected runn ing t ime of the procedure,
and then to use a part of the conf idence 6 to b o u n d with high-probabi l i ty the actual runn ing

208 R.E. SCHAPIRE

time of the algorithm. Thus, we will have shown that the procedure is probably fast and
correct, completing the proof of Theorem 1. (Although technically we only show that Lea rn
halts probabilistically, using techniques described by Haussler, Kearns, Littlestone and
Warmuth (1988), the procedure can easily be converted into a learning algorithm that halts
deterministically in polynomial time.)

We will be interested in bounding several quantities. First, we are of course interested
in bounding the expected running time T(e, 5) of Lea rn(e, 5, EX). This running time in
turn depends on the time U(e, 5) to evaluate an hypothesis returned by Lea rn, and on
the expected number of examples M(e, t5) needed by Lea rn. In addition, let t(6), u(6) and
m(6) be analogous quantities for Wea kLea r n(6, EX). By assumption, t, u and m are poly-
nomially bounded. Also, all of these functions depend implicitly on n and s.

As a technical point, we note that the expectations denoted by T and M are taken only
over good runs of Lea r n. That is, the expectations are computed given the assumption
that every sub-hypothesis and every estimator is successfully computed with the desired
accuracy. By Theorem 2, Learn will have a good run with probability at least 1 - 6.

It is also important to point out that T (respectively, 0 is the expected running time of
Lea rn (WeakLea rn) when called with an oracle E X that provides examples in unit time.
Our analysis will take into account the fact that the simulated oracles supplied to Lea rn
or WeakLea rn at lower levels of the recursion do not in general run in unit time.

We will see that T, U and M are all exponential in the depth of the recursion induced
by calling Lea r n. We therefore begin by bounding this depth. Let B(e, p) be the smallest
integer i for which gi(1/2 - lip) <_ e. On each recursive call, e is replaced by g-l(e).
Thus, the depth of the recursion is bounded by B(e, p(n, s)). We have:

LEMMA 1. The depth of the recursion induced by calling Learn(e, 5, EX) is at most
B(e, p(n , s)) -- O(log(p(n, s)) + log log(l/e)).

Proof We can say B(e, p(n, s)) <- b + c if gb(ll2 -- l ip(n, s)) <-- 1/4 and gC(1/4) <_ e.
Clearly, g(x) <- 3x 2 and so gi(x) <-- (3x) 2i. Thus, gC(1/4) <_ e if c = Fig log4/3(1/e)7 . Simi-
larly, if 1/4 < x _< 1/2 then 1/2 - g(x) = (1/2 - x)(1 + 2x - 2x 2) _> (11/8)(1/2 - x).
This implies that 1/2 - gi(x) >_ (11/8)i(1/2 - x), assuming that x, g(x) gi- l(x) are
all at least 1/4. Thus, gb(ll2 -- l ip(n, s)) <- 1/4 if b = Flog11/8(P(n, s)/4)7 . •

For the remainder of this analysis, we let p = p(n, s) and, where clear from context,
l e t B = B(e ,p) . Note that B(g-l(e), p) = B - 1 f o r e < 1/2 - lip.

We show next that U is polynomially bounded. This is important because we require
that the returned hypothesis be polynomially evaluatable.

LEMMA 2. The time to evaluate an hypothesis returned by Lea rn(e, 5, EX) is U(e, 5) =
o(3 B. u(6/sB)).

Proof I f e _> 1/2 - lip, then Learn returns an hypothesis computed by WeakLearn. In
this case, U(e, 6) = u(6). Otherwise, the hypothesis returned by Lea rn involves the com-
putation of at most three sub-hypotheses. Thus,

THE STRENGTH OF WEAK LEARNABILITY 209

U(e, 6) < 3 • U (g - l (e) , 6 /5) -4- c

for some positive constant c. A straightforward induction argument shows that this recurrence
implies the bound

U(e, 6) <_ 3Bu(6/5 B) + c(3 B - 1).

When an example is requested of a simulated oracle on one of Lea r n's recursive calls,
that oracle must itself draw several examples from its own oracle EX. For instance, on
the third recursive call, the simulated oracle must draw instances until it finds one on which
ha and h2 disagree. Naturally, the running time of Lea rn depends on how many examples
must be drawn in this manner by the simulated oracle. The next lemma bounds this quantity.

LEMMA 3. Let r be the expected number of examples drawn from E X by any oracle E X i

simulated by Lea rn on a good run when asked to provide a single example. Then r < 4/e.

P r o o f When Lea rn calls itself the first time (to find h0, the examples oracle E X it was
passed is left unchanged. In this case, r = 1.

The second time Lea rn calls itself, the constructed oracle EXz loops each time it is called
until it receives a desirable example. Depending on the result of the initial coin flip, we
expect EX2 to loop 1/al or 1/(1 - a 0 times. Note that if al < e - 2ra = e/3 then, based
on its estimate of aa, Lea rn would have simply returned ha instead of making a second
or third recursive call. Thus, we can assume e/3 < aa < 1/2, and so r < 3/e in this case.

Finally, when Lea rn calls itself the third time, we expect the constructed oracle EX3

to loop 1/(w + y) times before finding a suitable example. (Here, the variables w, x, y and
z are as defined in the proof of Theorem 2.) It remains then only to show that w + y _> e/4.
Note that the error e of h2 on the original distribution D is w + z. Thus, using this fact
and Equations (1), (2) and (6), we can solve explicitly for w and y in terms of e, aa and
a2, and so find that

w + y = aa + e - 4aaaz(1 - al) > aa + e - 4aac~(1 - aa)
1 - 2aa 1 - 2aa (7)

Regarding e and ot < 1/2 as fixed, we will refer to this last function on the right hand
side of the inequality a s f (a 0 . To lower bound w + y, we will find the min imum o f f on
the interval [0, a] . The derivative o f f is:

f ' (aa) = (4 - 8ot)a~ - (4 - 8e0aa + (1 - 4or + 2e)
(1 - 2aO 2

The denominator of this derivative is clearly zero only when aa = 1/2, and the numerator,
being a parabola centered about the line aa = 1/2, has at most one zero less than 1/2.
Thus, the func t ionfhas at most one critical point on the interval (- oo, 1/2). Furthermore,
s ince f t ends to - o o as aa ~ - o o a single critical point in this range cannot possibly be

210 R.E. SCHAPIRE

minimal. This means tha t f ' s min imum on any closed subinterval of (- oo, 1/2) is achieved
at one endpoint of the subinterval. In particular, for the subinterval of interest to us, the
function achieves its min imum either when al = 0 or when al = c~. Thus, w + y >

min(f(0) , f(o0).
We can assume that e _ • - 2z2 = (3/4 + od2)e; otherwise, if e were smaller than

this quantity, then Lea rn would have returned h: rather than going on to compute h3. Thus,
f (0) = e _> 3e/4, and, using our bound for e and the fact that e = 3c¢ z - 2a 3,

a - 6cd + 4a 3 + e
f (c0 = 1 - 2a

>
- 6a2 + 4a 3 + + ~ (3~2 - - 20t3)

1 - 2c~

1
= ~ c~(4 - 7c~ + 2a2).

Since 4 - 7~ + 2or 2 ~ 1 for u _< 1/2, f (a) >_ a/4 _ e/4. We conclude w + y _> e/4,
completing the proof. •

To bound the number of examples needed to estimate al and e, we will make use of
the following bounds on the tails of a binomial distribution (Angluin and Valiant, 1979;

Hoeffding, 1963).

LEMMA 4. (Chernoff Bounds) Consider a sequence of m independent Bernoulli trials, each
succeeding with probability p. Let S be the random variable describing the total number
of successes. Then for 0 < 3' < 1, the following hold:

• Pr[[S - rap[>_ 3"m] <_ 2e -2m~2,
• Pr[S --< (1 - 3")mp] < e -~mp/2, and
• Pr[S > (1 + 3")mp] <_ e -'~2mp/3.

LEMMA 5. On a good run, the expected number of examples M(e, 6) needed by L e a r n

(e, 6, EX) is

O ~ -36B • (p2 log(5BhS) + m(~/5B))~
~ e 2

Proof In the base case that e -> 1/2 - 1/p, L e a r n simply calls WeakLearn, SO we have
M(e, 6) = m(6). Otherwise, on each of the recursive calls, the simulated oracle is required
to provide M(g-l(e) , 6/5) examples. To provide one such example, the simulated oracle
must itself draw at most an average of 4/e examples from EX. Thus, each recursive call
demands at most (4/e) • M(g-l(e) , 6/5) examples on average.

T H E S T R E N G T H O F W E A K L E A R N A B I L I T Y 211

In addition, Lea rn requires some examples for making its estimates t]~ and $. Using the
first bound of L e m m a 4, it follows that a sample of size O(log(1/6)/~) suffices for each esti-
mate. Note that 1/p <_ 1/2 - e = 1/2 - g(ot) = (1/2 - or)(1 + 2c~ - 2ct 2) ___ (3/2)(1/2 - or).
Thus, by our choice of r~ and r2, both estimates can be made using O(p 2 log(1/6)/e 2)
examples.

We thus arrive at the recurrent inequality:

M(e, 6) < 1 2 . M(g_](e) ' 6/5) + cp2 log(l/6)
- - E e 2

(8)

for some positive constant c. To complete the proof, we argue inductively that this implies
the bound

M(e, 6) < 36s " m(6/5B) + c(36s - 1)p2 l°g(5B/6) (9)
- - t52

The base case clearly satisfies this bound. In the general case, Equation (8) implies by
inductive hypothesis that

< 1 2 ~.36 B - I . m(6/5 B) + c(36 B-1 - 1)p 2 1og(5B/6)_ '] + cp 2 log(l/6)
M(e, 6)

- - e ~ (g - l (e)) 2 . . J 6 2

12 p 6 B - I . m(6/5 s) + c(36 B-1 - 1)p 2 1og(5B/6)] + cp 2 log(l/6)
- e e/3 e 2

36 o • m(6/5 B) + c(36 s - 1)p2 log(5B/6)
e 2

cp2 (35 log(l/6) + 36 log 5)
6 2

which clearly implies Equation (9). The last inequality here follows from the fact that
e _ 3(g-l(e)) 2 since g(ot) _< 3or 2 for a _ 0. •

LEMMA 6. On a good run, the expected execution time of Learn(e , 6, EX) is given by

T(e, 6) = O (3 B • t(6/5 B) +
108 B- u(6/5 B)

C 2
• (p2 log(5S/6) + m(a15B))~ .

Proof As in the previous lemmas, the base case that e _ 1/2 - Up is easily handled.
In this case, T(e, 6) = t(6).

Otherwise, Lea rn takes t ime 3 • T(g-l(e), 6/5) on its three recursive calls. In addition,
Lea rn spends time drawing examples to make the estimates t~ and $, and overhead time
is also spent by the simulated examples oracles passed on the three recursive calls. A typical
example that is drawn from L e a r n ' s oracle EX is evaluated on zero, one or two of the
previously computed sub-hypotheses. For instance, an example drawn for the purpose of
estimating t~ is evaluated once by hi; an example drawn for the simulated oracle EX3 is
evaluated by both h~ and h2. Thus, Lea rn 's overhead time is proportional to the product

212 R.E. SCHAPIRE

of the total number of examples needed by t,ea rn and the time it takes to evaluate a sub-
hypothesis on one of these examples. Therefore, the following recurrence holds:

T(e, 8) <_ 3 • T(g-l(e), t5/5) + O (U (g - l (c) , 8 / 5) • M(e, tS)) (10)

Applying Lemmas 2 and 5, this implies

T(e, 5) < 3 • T(g-l(e), t5/5)+ c " 108 ° • u(tS/5 B) .
- - ~2 (p2 log(5B/~) + m(/~/5B))

for some positive constant c. A straightforward induction argument shows that this implies:

T(e, 8) -< 3 ° . t(tS/5 s) +
2c • 108 s • u(6/5 B)

e 2
• (p2 1og(5B//~) + m(tS/5B)). •

The main result of this section follows immediately:

THEOREM 3. Let 0 < e < 1/2 and let 0 < /~ < 1. With probability at least 1 - 8, the
execution of t,ea rn(e, t5/2, EX) halts in polynomial time and outputs an hypothesis e-close
to the target concept.

Proof. By Theorem 2, the chance that t ,earn does not have a good run is at most 8/2.
By Markov's inequality and Lemma 6, the chance that t,ea rn on a good run fails to halt
in time (2/8) • T(e, 6/2) is also at most 8/2. Thus, the probability that t,ea rn has a good
run (and so outputs an e-close hypothesis) and halts in polynomial time is at least 1 - 8.

3.5. Space complexity

Although not of immediate consequence to the proof of Theorem 3, it is worth pointing
out that t,ea r n's space requirements are relatively modest, as proved in this section.

Let S(e, 8) be the space used by t,earn(e, /~, EX); let Q(e, 8) be the space needed to
store an output hypothesis; and let R(e, 8) be the space needed to evaluate such an hypothesis.
Let s(6), q(6) and r(6) be analogous quantities for ffeaRt_ea rn(~, EX). Then we have:

LEMMA 7. The space Q(e, ~i) required to store an hypothesis output by Lea r n(e, 8, EX)
is at most 0(3 B • q(?J/5n)). The space R(e, 8) needed to evaluate such an hypothesis is
O(B + r(~5/5s)). Finally, the total space S(e, /~) required by l e a rn is 0(3 ° • q(6/5 B) +
s(6/5 B) + B • r(6/5n)).

Proof. For e -> 1/2 - 1/p, the bounds are trivial. To bound Q, note that the hypothesis
returned by t,ea rn is a composite of three (or fewer) hypotheses. Thus,

Q(e, 8) _< 3" Q(g-l(e), t5/5) + O(1).

THE STRENGTH OF WEAK LEARNABILITY 213

To evaluate such a composite hypothesis, each of the sub-hypotheses is evaluated one at
a time. Thus,

R(e, 6) <_ R(g-l(e), 6 /5) d- 0(1).

Finally, to bound S, note that the space required by Lea rn is dominated by the storage
of the sub-hypotheses, by their recursive computation, and by the space needed to evaluate
them. Since the sub-hypotheses are computed one at a time, we have:

S(e, 6) _< S(g-l(e), 6/5) + O(Q(g-l(o, 6/5) + R(g-l(e), 6/5)).

The solutions of these three recurrences are all straightforward, and imply the stated bounds.

4. Improving Lea rn's time and sample complexity

In this section, we describe a modification to the construction of Section 3 that significantly
improves Lea r n's time and sample complexity. In particular, we will improve these com-
plexity measures by roughly a factor of 1/e, giving bounds that are linear in 1/e (ignoring
log factors). These improved bounds will have some interesting consequences, described
in later sections.

In the original construction of Lea rn, much time and many examples are squandered
by the simulated oracles EXi waiting for a desirable instance to be drawn. Lemma 3 showed
that the expected time spent waiting is O(1/e). The modification described below will reduce
this to O(1/ot) = O(1/n/ee). (Here, a = g-l(e) as before.)

Recall that the running time of oracle EX2 depends on the error al of the first sub-
hypothesis ha. In the original construction, we ensured that a~ not be too small by estimating
its value, and, if smaller than e, returning ha instead of continuing the normal execution
of the subroutine. Since this approach only guarantees that a~ _ i2(e), there does not seem
to be any way of ensuring that EX2 run for o(1/e) time. To improve EX~s running time then,
we will instead modify h~ by deliberately increasing its error. Ironically, this intentional
injection of error will have the effect of improving Lea rn's worst case running time by
limiting the time spent by either EX2 or EX3 waiting for a suitable instance.

4.L The modifications

Specifically, here is how Lea rn is modified. Call the new procedure Lea rn '. Following
the recursive computation of ha, Lea rn ' estimates the error al of hi, although less accurately
than Learn . Let aa be this estimate, and choose a sample large enough that lal - hal
< ~/4 with probability at least 1 - 6/5. Since 0 __ a~ _< oz, we can assume without loss
of generality that od4 __ fi~ _< 3od4.

Next, Lea r n ' defines a new hypothesis h~' as follows: given an instance v, hi first flips
a coin biased to turn up heads with probability exactly

214 R.E. SCHAPIRE

3 ~a -ha

/ 3 = 1 1 -~c~ -ha

I f the outcome is tails, then hi evaluates hi(v) and returns the result. Otherwise, i f heads,
h~ predicts the wrong answer, ~ c(v). Since h~ will only be used during the training phase,
we can assume that the correct classification of v is available, and thus that h~ can be
simulated.

This new hypothesis h~ is now used in place ofh~ by EX2 and EX3. The rest of the sub-
routine is unmodified (aside from one other minor modification described in Lemma 8
below). In particular, the final returned hypothesis h is unchanged-- that is, ha, not hi, is
used by h.

4.2. Correctness

To see that Lea r n ' is correct, we will assume as in the proof of Theorem 2 that a good
run occurs; this will be the case with probabil i ty at least 1 - 6. Note first that the error
of h~ is exactly a~ = (1 - /3)al + / 3 since the chance of error is a l on mils, and is 1 on
heads. By our choice of/3, it can be verified that a/2 <_ a~ <_ ~.

Let h ' be the same hypothesis as h, except with h~ used in lieu of ha. Note that h', h~,
h2 and h3 are related to one another in exactly the same way that h, ha, h2 and h3 are related
in the original proof of Theorem 2. That is, if we imagine that h~ is returned on the first
recursive call of the original procedure Lea rn, then it is not impossible that h2 and h3
would be returned on the second and third recursive calls, in which case h ' would be the
returned hypothesis. Put another way, the proof that h ' has error at most g(ot) = e is an
identical copy of the one given in the proof of Theorem 2, except that all occurrences of
h and ha are replaced by h ' and h~.

Finally, we must shown that h's error is at most that ofh ' . Letp~(v) = Pr[h~'(v) ;~ c(v)],
and let pi(v) be as in Theorem 2. Then for v ~ Xn, we have

Pr[h'(v) ~ c(v)l = p((v)[(1 - p2(v))p3(v) + p2(v)(1 - p3(v))l + p2(v)p3(v)

- pa(v)[(1 - p2(v))p3(v) + p2(v)(1 - p3(v))l + p2(v)p3(v)

= Pr[h(v) ~ c(v)].

where the inequality follows from the observation thatp~(v) = (1 - / 3) p l (v) + / 3 _> pa(v).
This implies that the error of h is at most the error of h', which is bounded by e.

4.3. Analysis

Next, we show that Lea r n ' runs faster using fewer examples than Lea rn. We use essen-
tially the same analysis as in Section 3.4. The following three lemmas are modified ver-
sions of Lemmas 3, 5 and 6. The proofs of the other lemmas apply immediately to L e a r n '
with little or no modification, and so are ommitted.

THE STRENGTH OF WEAK LEARNABILITY 215

LEMMA 8. Let r be the expected number of examples drawn from EX by any oracle EXi
simulated by L e a r n ' on a good run when asked to provide a single example. Then r <_ 4/a.

Proof As in the original proof, r = 1 for E X 1. We expect the second oracle to loop at
most 1/a~ times on average. Since a~ _> cd2, r is at most 2/or in this case.

Finally, to bound the number of iterations of EX3, we will shown that w + y >_ a/4
using Equation (7) as in the original proof. To lower bound w + y, we find the minimum
of the last formulafof Equation (7) (with al replaced by a; of course) on the interval [od2, a].
As noted previously, the func t ionfmust achieve its minimum at one endpoint of the inter-
val. We assume as in the original proof that e _> (3/4 + a/2)e. It was previously shown
t h a t f (a) _ od4, and, by a similar argument, we can s h o w f (a / 2) _> od2 + oP + a2/4
(1 - or) ___ od2. This completes the proof. •

LEMMA 9. On a good run, the expected number of examples M(e, 6) needed by Lea rn '
(e, 6, EX) is

O ~3-~-- " (p210g(5B/6) + m(6/5B))~ .

Proof The proof is nearly the same as for Lemma 5. In addition to incorporating the superior
bound given by Lemma 8 on the number of examples needed by the simulated oracles,
we must also consider the number of examples needed to estimate al and e. The first, al,
can be estimated using a sample of size O(log(1/6)/a z) = O(log(1/6)/e); this can be derived
from the first bound of Lemma 4, and by noting that e = g(a) ___ 3a 2 for c~ > 0. By
estimating e in a slightly different manner, we can also achieve a better bound on the sam-
ple size needed. Specifically, we can choose a sample large enough that, with probability
1 - 6/5,~ _< e - 7 2 i f e ___ e - 272, a n d S - > e - 7 2 i f e _> e. Such an estimate has
all of the properties needed by Lea rn ', but only requires a sample of size O(p 2 log(1/6)/e)
as can be derived using the second and third bound of Lemma 4. (See Haussler, Keams,
Littlestone and Warmuth (1988) for a detailed example of this sort of calculation.)

Thus, we arrive at the recurrence

12
M(e, 6) _< - -

g- l (e)
• M(g-l(e) , 6 / 5) + O ~-P2 l°g(1 /6~

which implies the stated bound by an argument similar to that given in the proof of Lemma 5.

LEMMA 10. On a good run, the expected execution time of Lea rn '(e, 6, EX) is given by

T(e, 6) = 0 ~3 B • t(6/5 s) +
108 B- u(6/5 B)

• (p2 log(5S/6) + m(6/5s))~ .

Proof This bound follows from Equation (10), using the superior bound on M given by
Lernma 9. •

216 R.E. SCHAPIRE

5. Variations on the learning model

Next, we consider how the main result relates to some other learning models.

5.L Group learning

An immediate consequence of Theorem 1 concerns group learnability. In the group learn-
ing model, the learner produces a hypothesis that need only correctly classify large groups
of instances, all of which are either positive or negative examples. Kearns and Valiant (1989)
prove the equivalence of group learning and weak learning. Thus, by Theorem 1, group
learning is also equivalent to strong learning.

5.2. Miscellaneous PAC models

Haussler, Kearns, Littlestone and Warmuth (1988) describe numerous variations on the
basic PAC model, and show that all of them are equivalent. For instance, they consider
randomized versus deterministic algorithms, algorithms for which the size s of the target
concept is known or unknown, and so on. It is not hard to see that all of their equivalence
proofs apply to weak learning algorithms as well (with one exception described below),
and so that any of these weak learning models are equivalent by Theorem 1 to the basic
PAC-learning model.

The one reduction from their paper that does not hold for weak learning algorithms con-
cerns the equivalence of the one- and two-oracle learning models. In the one-oracle model
(used exclusively in this paper), the learner has access to a single source of positive and
negative examples. In the two-oracle model, the learner has access to one oracle that returns
only positive examples, and another returning only negative examples. The authors show
that these models are equivalent for strong learning algorithms. However, their proof appar-
ently cannot be adapted to show that one-oracle weak learnability implies two-oracle weak
learnability (although their proof of the converse is easily and validly adapted). This is
because their proof assumes that the error e can be made arbitrarily small, clearly a bad
assumption for weak learning algorithms. Nevertheless, this is not a problem since we have
shown that one-oracle weak learnability implies one-oracle strong learnability, which in
turn implies two-oracle strong (and therefore weak) learnability. Thus, despite the inapplica-
bility of Haussler et al?s original proof, all four learning models are equivalent.

5.3. Fixed hypotheses

Much of the PAC-learning research has been concerned with the form or representation
of the hypotheses output by the learning algorithm. Clearly, the construction described
in Section 3 does not in general preserve the form of the hypotheses used by the weak
learning algorithm. It is natural to ask whether there exists any construction preserving
this form. That is, if concept class C is weakly learnable by an algorithm using hypotheses

THE STRENGTH OF WEAK LEARNABILITY 217

from a class H of representations, does there then exist a strong learning algorithm for
C that also only outputs hypotheses from H?.

In general, the answer to this question is no (modulo some relatively weak complexity
assumptions). As a simple example, consider the problem of learning k-term DNF formulas
using only hypotheses represented by k-term DNF. (A formula in disjunctive normal form
(DNF) is one written as a disjunction of terms, each of which is a conjunction of literals,
a literal being either a variable or its complement.) Pitt and Valiant (1988) show that this
learning problem is infeasible if RP ~ NP for k as small as 2.

Nevertheless, the weak learning problem is solved by the algorithm sketched below. (A
similar algorithm is given by Kearns (1988).) First, choose a "large" sample. If significantly
more than half of the examples in the sample are negative (positive), then output the "always
predict negative (positive)" hypothesis, and halt. Otherwise, we can assume that the distribu-
tion is roughly evenly split between positive and negative examples. Select and output the
disjunction of k or fewer literals that misclassifies none of the positive examples, and the
fewest of the negative examples.

We briefly argue that this hypothesis is, with high probability, (1/2 - fl(1/ne))-close to
the target concept. First, note that the target k-term DNF formula is equivalent to some
k-CNF formula (Pitt and Valiant, 1988). (A formula in conjunctive normal form (CNF)
is one written as the conjunction of clauses, each clause a disjunction of literals. If each
clause consists of only k literals, then the formula is in k-CNE) Next, we observe that
every clause is satisfied by every assignment that satisfies the entire k-CNF formula. More-
over, since the formula has at most O(n ~) clauses, by an averaging argument, there must
be one clause not satisfied by fl(1/n k) of the assignments (as weighted by the target distribu-
tion) that do not satisfy the entire formula. Thus, there exists some disjunction of k literals
that is correct for nearly all of the positive examples and for at least flO/n k) of the negative
examples. In particular, the output hypothesis has this property. Since the distribution is
roughly evenly divided between positive and negative examples, this implies that the output
hypothesis is roughly (1/2 - f~(1/nk))-close to the target formula.

5.4. Queries

A number of researchers have considered learning scenarios in which the learner is not
only able to passively observe randomly selected examples, but is also able to ask a "teacher"
various sorts of questions or queries about the target concept. For instance, the learner
might be allowed to ask if some particular instance is a positive or negative example. Angluin
(1988) describes several kinds of query that might be useful to the learner. The purpose
of this section is simply to point out that the construction of Section 3 is applicable even
in the presence of most kinds of query. That is, a weak learning algorithm that depends
on the availability of certain kinds of query can be converted, using the same construction,
into a strong learning algorithm using the same query types.

5.5. Many-valued concepts

In this paper, we have only considered Boolean valued concepts, that is, concepts that classify
every instance as either a positive or a negative example. Of course, in the "real world,"

218 R.E. S C H A P I R E

most learning tasks require classification into one of several categories (for instance, character
recognition). How does the result generalize to handle many-valued concepts?

First of all, for learning a k-valued concept, it is not immediately clear how to define
the notion of weak learnability. An hypothesis that guesses randomly on every instance
will be correct only 1/k of the time, so one natural definition would require only that the
weak learning algorithm classify instances correctly slightly more than 1/k of the time.
Unfortunately, under this definition, strong and weak learnability are inequivalent for k
as small as three. As an informal example, consider learning a concept taking the values
0, 1 and 2, and suppose that it is "easy" to predict when the concept has the value 2, but
"hard" to predict whether the concept's value is 0 or 1. Then to weakly learn such a con-
cept, it suffices to fmd an hypothesis that is correct whenever the concept is 2, and that
guesses randomly otherwise. For any distribution, this hypothesis will be correct half of
the time, achieving the weak learning criterion of accuracy significantly better than 1/3.
However, boosting the accuracy further is clearly infeasible.

Thus, a better definition of weak learnability is one requiring that the hypothesis be correct
on slightly more than half of the distribution, regardless of k. Using this definition, the
construction of Section 3 is easily modified to handle many-valued concepts.

6. General complexity bounds for PAC learning

The construction derived in Sections 3 and 4 yields some unexpected relationships between
the allowed error e and various complexity measures that might be applied to a strong learn-
ing algorithm. One of the more surprising of these is a proof that, for every learnable con-
cept class, there exists an efficient algorithm whose output hypotheses can be evaluated
in time polynomial in log(l/e). Furthermore, such an algorithm's space requirements are
also only poly-logarithmic in I/e--far less, for instance, than would be needed to store the
entire sample. In addition, its time and sample size requirements grow only linearly in
1/e (disregarding log factors).

THEOREM 4. If C is a learnable concept class, then there exists an efficient learning algorithm
for C that:

• requires a sample of size pl(n, s, log(l/e), log(I/6))
e

• halts in time p2(n, s, log(l/e), log(I/6))
e

• uses space p3(n, s, log0/e), log0/b)), and
• outputs hypotheses of size p4(n, s, log0/e)), evaluatable in time ps(n, s, log0/e))

for some polynomials Pl, P2, P3, P4 and Ps-

Proof Given a strong learning algorithm A for C, "hard-wire" e = 1/4, thus converting
A into a weak learning algorithm A' that outputs hypotheses 1/4-close to the target concept.

THE STRENGTH OF WEAK LEARNABILITY 219

Now let A" be the procedure obtained by applying the construction of Lea rn ' with A'
plugged in for Weakl_ea rn. As remarked previously, we can assume without loss of gener-
ality that A" halts deterministically in polynomial time. Note, by the lemmas of Sections 3
and 4 that A" "almost" achieves the resource bounds given in the theorem, the only problem
being that the bounds attained are polynomial in 1/6 rather than log(1/~) as desired.

This problem is alleviated by applying the construction of Haussler, Kearns, Littlestone
and Warmuth (1988) for converting any learning algorithm B into one running in time poly-
nomial in log0/6). Essentially, this construction works as follows: Given inputs n, s, e and
6, first simulate B O(logl/6)) times, each time setting B's accuracy parameter to e/4 and
B's confidence parameter to 1/2. Save all of the computed hypotheses. Next, draw a sample
of O(log(1/di)/e) examples, and output the one that misclassifies the fewest examples in the
sample. Haussler, et al. argue that the resulting procedure outputs an e-close hypothesis
with probability 1 - 6.

Applying this construction to A", we obtain a final procedure that one can verify achieves
all of the stated bounds. •

The remainder of this section is a discussion of some of the consequences of Theorem 4.

6.1. Improving the performance of known algorithms

These bounds can be applied immediately to a number of existing learning algorithms,
yielding improvements in time and/or space complexity (at least in terms of e). For instance,
the computation time of Blumer, Ehrenfeucht, Haussler and Warmuth's (1989) algorithm
for learning half-spaces of R n, which involves the solution of a linear programming prob-
lem of size proportional to the sample, can be improved by a polynomial factor of 1/e.
The same is also true of Baum's (1989) algorithm for learning unions of half-spaces, which
involves finding the convex hull of a significant fraction of the sample.

There are many more algorithms for which the theorem implies improved space effi-
ciency. This is especially true of the many known PAC algorithms that work by choosing
a large sample and then finding an hypothesis consistent with it. For instance, this is how
Rivest's (1987) decision list algorithm works, as do most of the algorithms described by
Blumer, et al., as well as Helmbold, Sloan and Warmuth's (1990) construction for learning
nested differences of learnable concepts. Since the entire sample must be stored, these
algorithms are not terribly space efficient, and so can be dramatically improved by applying
Theorem 4. Of course, these improvements typically come at the cost of requiring a some-
what larger sample (by a polynomial factor of log(l/e)). Thus, there appears to be a trade-
off between space and sample size (or time) complexity.

6.2. Data compression

Blumer, Ehrenfeucht, Haussler and Warmuth (1987; 1989) have considered the relationship
between learning and data compression. They have shown that, if any sample can be com-
pressed--that is, represented by a prediction rule significantly smaller than the original
sample--then this compression algorithm can be converted into a PAC-learning algorithm.

220 R.E. SCHAPIRE

In some sense, the bound given in Theorem 4 on the size of the output hypothesis implies
the converse. In particular, suppose Cn is a learnable concept class and that we have been
given m examples (vl, C(Vl)), (v2, c(v2)) (V m , c(vm)) where each 12 i E X n and c is a
concept in Cn of size s. These examples need not have been chosen at random. The data
compression problem is to find a small representation for the data, that is, an hypothesis
h that is significantly smaller than the original data set with the property that h(vi) = c(vi)
for each v i. An hypothesis with this last property is said to be consistent with the sample.

Theorem 4 implies the existence of an efficient algorithm that outputs consistent hypotheses
only poly-logarithmic in the size m of the sample. This is proved by the following theorem:

THEOREM 5. Let C be a learnable concept class. Then there exists an efficient algorithm
that, given 0 < 8 _ 1 and m (distinct) examples of a concept c ~ Cn of size s, outputs
with probability at least 1 - ~ a deterministic hypothesis consistent with the sample and
of size polynomial in n, s and log m.

Proof Pitt and Valiant (1988) show how to convert any learning algorithm into one that
finds hypotheses consistent with a set of data points. The idea is to choose e < 1/m and
to run the learning algorithm on a (simulated) uniform distribution over the data set. Since
e is less than the weight placed on any element of the sample, the output hypothesis must
have error zero. Applying this technique to a learning algorithm A satisfying the conditions
of Theorem 4, we see that the output hypothesis has size only polynomial in n, s and
log m, and so is far smaller than the original sample for large m.

Technically, this technique requires that the learning algorithm output deterministic hypoth-
eses. However, probabilistic hypotheses can also be handled by choosing a somewhat smaller
value for e, and by "hard-wiring" the computed probabilistic hypothesis with a sequence of
random bits. More precisely, set e = 1/2m, and run A over the same distribution as before.
Assume A has a good run. Note that the output hypothesis h can be regarded as a deter-
ministic function of an instance v and a sequence of random bits r. Let p be the chance
that, for a randomly chosen sequence r, h(' , r) misclassifies one or more of the instances
in the sample. For such an r, the chance is certainly at least 1/m that an instance v is chosen
(according to the simulated uniform distribution on the sample) for which h(v, r) ~ c(v).
Thus, the error of h is at least p/m. By our choice of e, this implies that p - 1/2, or,
in other words, that the probability that a random sequence r is chosen for which h(' , r)
correctly classifies all of the m examples is at least 1/2. Thus, choosing and testing random
sequences r, we can quickly find one for which the deterministic hypothesis h(., r) is con-
sistent with the sample. Finally, note that the size of this output hard-wired hypothesis is
bounded by Ih[+ [rl, and that Irl is bounded by the time it takes to evaluate h, which
is poly-logarithmic in m. •

Naturally, the notion of size in the preceding theorem depends on the underlying model
of computation, which we have left unspecified. However, the theorem has some immediate
corollaries when the learning problem is discrete, that is, when every instance in the domain
Xn is encoded using a finite alphabet by a string of legnth bounded by a polynomial in
n, and every concept in C of size s is also encoded using a finite alphabet by a string of
length bounded by a polynomial in s.

T H E S T R E N G T H O F W E A K L E A R N A B I L I T Y 221

COROLLARY 1. Let C be a learnable discrete concept class. Then there exists an efficient
algorithm that, given 0 < 6 ___ 1 and a sample as in Theorem 5, outputs with probability
at least 1 - 6 a deterministic consistent hypothesis of size polynomial in n and s, and
independent of m.

Proof Since we assume (without loss of generality) that all the points of the sample are
distinct, its size m cananot exceed [Xn]. Since log Ix.I is bounded by a polynomial in n,
the corollary follows immediately. •

Applying Occam's Razor of Blumer, et al. (1987), this implies the following strong general
bound on the sample size needed to efficiently learn C. Although the bound is better than
that given by Theorem 4 (at least in terms of e), it should be pointed out that this improve-
ment requires the sacrifice of space efficiency since the entire sample must be stored.

THEOREM 6. Let C be a learnable discrete concept class. Then there exists an efficient learn-
ing algorithm for C requiring a sample of size

o ~P_(n, s) + l°g(1/6~

for some polynomial p.

Proof Blumer, et al. (1987) describe a technique for converting a so-called Occam algorithm
A with the property described in Corollary 1 into an efficient learning algorithm with the
stated sample complexity bound. Essentially, to make this conversion, one simply draws a
sample of the stated size (choosingp appropriately), and runs A on the sample to find a con-
sistent hypothesis. The authors argue that the computed hypothesis, simply by virtue of its
small size and consistency with the sample, will be e-close to the target concept with high
probability. (Technically, their approach needs some minor modifications to handle, for in-
stance, a randomized Occam algorithm; these modifications are straightforward.) •

6.3. Hard funct ions are hard to learn

Theorem 4's bound on the size of the output hypothesis also implies that any hard-to-evaluate
concept class is unlearnable. Although this result does not sound surprising, it was previously
unclear how it might be proved: since a learning algorithm's hypotheses are technically
permitted to grow polynomially in l/e, the learnability of such classes did not seem out
of the question.

This result yields the first representation-independent hardness results not based on cryp-
tographic assumptions. For instance, assuming P/poly ~ NP/poly, the class of polynomial-
size, nondeterministic Boolean circuits is not learnable. (The set P/poly (NP/POly) consists
of those languages accepted by a family of polynomial-size deterministic (nondeterministic)
circuits.) Furthermore, since learning pattern languages was recently shown (Schapire, 1989)
to be as hard as learning NP/poly, this result shows that pattern languages are also unlearn-
able under this relatively weak structural assumption.

222 R.E. SCHAPIRE

THEOREM 7. Suppose C is learnable, and assume that X~ = {0, 1}L Then there exists a
polynomial p such that for all concepts c E C~ of size s, there exists a circuit of size p(n, s)
exactly computing c.

Proof. Consider the set of 2 n pairs {(v, c(v)) I v ~ Xn}. By Corollary 1, there exists an
algorithm that, with positive probability, will output an hypothesis consistent with this set
of elements of size only polynomial in n and s. Since this hypothesis is polynomially eval-
uatable, it can be converted using standard techniques into a circuit of the required size.

6.4. Hard functions are hard to approximate

By a similar argument, the bound on hypothesis size implies that any function not com-
putable by small circuits cannot even be weakly approximated by a family of small circuits,
for some distribution on the inputs.

L e t f b e a Boolean function on {0, 1}*, D a distribution on {0, 1} n and C a circuit on
n variables. Then Ci s said to 13-approximatefunder D if the probability is at most/5 that
C(v) ;~ f (v) on an assignment v chosen randomly from {0, 1} ~ according to D.

THEOREM 8. Suppose some function f cannot be computed by any family of polynomial-
size circuits. Then there exists a family of distributions D~, D2 where D~ is over
the set {0, 1} n, such that for all polynomials p and q, there exist infinitely many n for
which there exists no n-variable circuit of size at most q(n) that (1/2 - 1/p(n))-approximates
f under Dn.

Proof. Throughout this proof, we will assume without loss of generality that p(n) = q(n)
= n k for some integer k _ 1.

Suppose first that there exists some k such that for all n and every distribution D on
{0, 1} n, there exists a circuit of size at most n k that (1/2 - 1/nk)-approximatesfunder D.
Then f can, in a sense, be weakly learned. More precisely, there exists an (exponential-
time) procedure that, by searching exhaustively the set of all circuits of size n k, will find
one that (1/2 - 1/nk)-approximatesfunder some given distribution D. Therefore, by Theo-
rem 1, f i s strongly learnable in a similar sense in exponential time. Applying Theorem 7
(whose validity depends only on the size of the output hypothesis, and not on the running
time), this implies t ha t f can be exactly computed by a family of polynomial-size circuits,
contradicting the theorem's hypothesis.

Thus, for all k _ 1, there exists an integer n and a distribution D on {0, 1} n such that
no circuit of size at most n k is able to (1/2 - 1/nk)-approximate f under D. To complete
the proof, it suffices to show that this implies the theorem's conclusion.

Let D~n be the set of distributions D on {0, 1} n for which no circuit of size at most
n k (1/2 - 1/nk)-approximatesfunder D. It is easy to verify that/~n ----- Dff +1 for all k, n.
Also, since every function can be computed by exponential size circuits, there must exist
a constant c > 0 for which/9~ ~ = 0 for all n. Let n[k] be the smallest n for which ~ ~ 0.
By the preceding argument, n[k] must exist. Furthermore, n[k] >_ k/c, which implies that
the set N = {n[k] I k _> 1} cannot have finite cardinality.

THE STRENGTH OF WEAK LEARNABILITY 223

To eliminate repeated elements from N, let k~ < k2 < • • • be such that n[k i] ~ n[ky]
for i ;a j , and such that {n[ki] [i >_ 1} = N. Let Di be defined as follows: if i = n[kj]
for some j , then let Di be any distribution in/~/J (which cannot be empty by our definition
of n[k]); otherwise, if i t[N, then define D i arbitrarily. Then D1, D2, • • • is the desired
family of "hard" distributions. For if k is any integer, then for all ki >- k, Dn[ki I ~ 19~iki] c
/~n[ki]. This proves the theorem. •

Informally, Theorem 8 states that any language not in the complexity class P/poly cannot
be even weakly approximated by any other language in P/poly under some "hard" family
of distributions. In fact, the theorem can easily be modified to apply to other circuit classes
as well, including monotone P/poly, and monotone or non-monotone NC k for fixed k. (The
class NC k consists of all languages accepted by polynomial-size circuits of depth at most
O(log k n), and a monotone circuit is one in which no negated variables appear.) In general,
the theorem applies to all circuit classes closed under the transformation on hypotheses
resulting from the construction of Section 3 and 4.

6.5. On-line learning

Finally, we consider implications of Theorem 4 for on-line learning algorithms. In the on-
line learning model, the learner is presented one (randomly selected) instance at a time
in a series of trials. Before being told its correct classification, the learner must try to
predict whether the instance is a positive or negative example. An incorrect prediction is
called a mistake. In this model, the learner's goal is to minimize the number of mistakes.

Previously, Haussler, Littlestone and Warrnuth (1987) have shown that a concept class
C is learnable if and only if there exists an on-line learning algorithm for C with the prop-
erties that:

• the probability of a mistake on the m-th trial is at worst linear in m -~ for some constant
0 < /3 _< 1, and (equivalently)

• the expected number of mistakes on the first m trials is at worst linear in m s for some
constant 0 _ a < 1.

(This result is also described in their paper with Kearns (1988).) Noting several examples
of learning algorithms for which this second bound only grows poly-logarithmically in m,
the authors ask if every learnable concept class has an algorithm attaining such a bound.
Theorem 8 below answers this open question affirmatively, showing that in general the
expected number of mistakes on the first m trials need only grow as a polynomial in log m.
Thus, we expect only a minute fraction of the first m predictions to be incorrect.

(This result should not be confused with those presented in another paper by Haussler,
Littlestone and Warmuth (1988). In this paper, the authors describe a general algorithm
applicable to a wide collection of concept classes, and they show that the expected number
of mistakes made by this algorithm on the first m trials is linear in log m. However, their
algorithm requires exponential computation time, even if it is known that the concept class

224 R.E. SCHAPIRE

is learnable. In contrast, Theorem 8 states that, if a concept class is learnable, then there
exists an efficient algorithm making poly-logarithmic in m mistakes on average on the first
m trials.)

Haussler, Littlestone and Warmuth (1987) also consider the space efficiency of on-line
learning algorithms. They defme a space-efficient learning algorithm to be one whose space
requirements on the first m trials do not exceed a polynomial in n, s and log m. Thus,
a space-efficient algorithm is one using far less memory than would be required to store
explicitly all of the preceding observations. The authors describe a number of space-efficient
algorithms (though are unable to find one for learning unions of axis-parallel rectangles
in the plane), and so are led to ask whether there exist space-efficient algorithms for all
learnable concept classes. Surprisingly, this open question can also be answered afirmatively,
as proved by the theorem below.

Lastly, Theorem 8 gives a bound on the computational complexity of on-line learning
(in terms of m). In particular, the total computation time required to process the first m
examples is only proportional to m log ~ m, for some constant c. Thus, in a sense, the
"amortized" or "average" computation time on the m-th trial is only poly-logarithmic in m.
(In fact, a more careful analysis would show that this is also true of the worst case com-
putation time on the m-th trial.)

THEOREM 8. Let C be a learnable concept class. Then there exists an efficient on-line learn-
ing algorithm for C with the properties that:

• the probability of a mistake on the m-th trial is at most m -1 • p,(n, s, log m),
• the expected number of mistakes on the first m trials is at most p2(n, s, log m),
• the total computation time required on the first m trials is at most m" p3(n, s, log m), and
• the space used on the first m trials is at most p4(n, s, log m),

for some polynomials p , , P2, P3, P4-

Proof Since C is learnable, there exists an efficient (batch) algorithm satisfying the proper-
ties of Theorem 4. l_~t A be such an algorithm, but with el2 substituted for both e and
6. Then the chance that A's output hypothesis incorrectly classifies a randomly chosen in-
stance is at most e. (This technique is also used by Haussler, Kearns, Littlestone and
Warmuth (1988).)

Fix n and s, and let re(e) be the number of examples needed by A. From Theorem 4,
re(e) _< (p/e) • lgC(1/e) for some constant c and some value p implicitly bounded by a poly-
nomial in n and s. Let e(m) = (p/m) • lgC(m/p). Then it can be verified that m(e(m)) <- m
for m _> 2p. Thus, m examples suffice to find an hypothesis whose chance of error is at
most e(m).

To convert A into an on-line learning algorithm in a manner that preserves time and space
efficiency, imagine breaking the sequence of trials into blocks of increasing size: the first
block consists of the first 2p trials, and each new block has twice the size of the last. Thus,
in general, the i-th block has size si = 2ip, and consists of trials ai = 2(2 H - 1)p + 1
through bi = 2(2 / - 1)p.

T H E S T R E N G T H O F W E A K L E A R N A B I L I T Y 225

On the trials of the i-th block, algorithm A is simulated to compute the i-th hypothesis
h i. Specifically, A is simulated with e set to e(s i) , which thus bounds the probability that
h i misclassifies a new instance. (Note that there are enough instances available in this block
for A to compute an hypothesis of the desired accuracy.) On the next block, as the (i + 1)st
hypothesis is being computed, h i is used to make predictions; at the end of this block,
h i is discarded a s hi+ 1 takes its place.

Thus, if the m-th trial occurs in the i-th block (i.e., if a i <_ m <_ bi) , then the probability
of a mistake is bounded by e (S i _ l) , the error rate of hi_ 1 . From the definition of e() , this
implies the desired bound on the probability of a mistake on the m-th trial, and, in turn,
on the expected number of mistakes on the first m trials.

Finally, note that on the i-th block, space is needed only to store the hypothesis from
the last block hi_l , and to simulate A's computation of block i's hypothesis. By Theorem 4,
both of these quantities grow polynomially in log(l/e). By our choice of e, this implies
the desired bound on the algorithm's space efficiency. The time complexity of the procedure
is bounded in a similar fashion. •

7. Conclusions and open problems

We have shown that a model of learnability in which the learner is only required to perform
slightly better than guessing is as strong as a model in which the learner's error can be
made arbitrarily small. The proof of this result was based on the filtering of the distribution
in a manner causing the weak learning algorithm to eventually learn nearly the entire distribu-
tion. We have also shown that this proof implies a set of general bounds on the complexity
of PAC-learning (both batch and on-line), and have discussed some of the applications of
these bounds.

It is hoped that these results will open the way on a new method of algorithm design
for PAC-learning. As previously mentioned, the vast majority of currently known algorithms
work by finding a hypothesis consistent with a large sample. An alternative approach sug-
gested by the main result is to seek instead a hypothesis covering slightly more than half
the distribution. Perhaps, such an hypothesis is easier to find, at least from the point of
view of the algorithm designer. This approach leads to algorithms with a flavor similar
to the one described for k-term DNF in Section 5.3, and it is possible to find similar algo-
rithms for a number of other concept classes that are already known to be learnable (for
example, k-decision lists (Rivest, 1987) and rank r decision trees (Ehrenfeucht and Haussler,
1989)). To what extent will this approach be fruitful for other classes not presently known
to be learnable? This is an open question.

Another open problem concerns the robustness of the construction described in this paper.
Intuitively, it seems that there should be a close relationship between reducing the error
of the hypothesis, and overcoming noise in the data. Is this a valid intuition? Can our con-
struction be modified to handle noise?

Finally, turning away from the theoretical side of machine learning, we can ask how well
our construction would perform in practice. Often, a learning problem (for instance, a neural
network) is designed, implemented, and found empirically to achieve a "good" error rate,
but no way is seen of improving the program further to enable it to achieve a "great" error

226 R.E. SCHAPIRE

rate. Suppose our construction is implemented on top of this learning program. Would
it help? This is not a theoretical question, but one that can only be answered experimentally,
and one that obviously depends on the domain and the underlying learning program. Never-
theless, it seems plausible that the construction might in some cases give good results in
practice.

Acknowledgments

This paper was prepared with support from ARO Grant DAAL03-86-K-0171, DARPA Con-
tract N00014-89-J-1988, and a grant from the Siemens Corporation.

Thanks to Sally Goldman, Michael Kearns, and Ron Rivest for their helpful comments
and suggestions. Thanks also to the anonymous referees of this paper for their careful reading
and thoughtful comments.

References

Angluin, D. (1980). Finding patterns common to a set of strings. J. of Computer and System Sciences, 21, 46-62.
Angluin D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.
Angluin, D. and Valiant, L.G. (1979). Fast probabilistic algorithms for Hamiltonian circuits and matchings. J.

Computer and System Sciences, 18, 155-193.
Baum, E.B. (1989). On learning a union of half spaces. Unpublished manuscript.
Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (087). Occam's razor. Information Processing

Letters, 24, 377-380.
Bltuner, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis

dimension. J. of the Association for Computing Machinery, 36, 929-965.
Board, R. and Pitt, L. (1990). On the necessity of Occam algorithms. (In press) Proceedings of the Twenty-second

Annual ACM Symposium on Theory of Computing. New York, NY: ACM Press.
Boucheron, S. and Sallantin, J. (1988). Some remarks about space-complexity of learning, and circuit complexity

of recognizing. Proceedings of the 1988 Workshop on Computational Learning Theory (pp. 125-138). San Mateo,
CA: Morgan Kaufman.

Ehfenfeucht, A. and Haussler, D. (1989). Learning decision trees from random examples. Information and Com-
putation, 3, 231-246.

Floyd, S. (1989). Space-bounded learning and the Vapnik-Chervonenkis dimension. Proceedings of the Second
Annual Workshop on Computational Learning Theory (pp. 349-364). San Mateo, CA: Morgan Kaufman.

Hanssler, D. (1988). Space efficient learning algorithms (Technical Report UCSC-CRL-88-2). Santa Cruz, CA:
University of California, Baskin Center for Computer Engineering and Information Sciences.

Haussler, D., Kearns, M., Littlestone, N., and Warmuth, M.K. (1988). Equivalence of models for polynomial
learnability. Proceedings of the 1988 Workshop on Computational Learning Theory (pp. 42-55). San Mateo,
CA: Morgan Kaufman.

Haussler, D., Littlestone, N., and Warmuth, M.K. (1987). Expected mistake bounds for on-line learning algorithms.
Unpublished manuscript.

Haussler, D., Littlestone, N., and Warmuth, M.K. (1988). Predicting {0, 1}-functions on randomly drawn points.
Proceedings of the Twenty-Ninth Annual Symposium on Foundations of Computer Science (pp. 100-109). Washing-
ton, DC: IEEE Computer Society Press.

Helmbold, D., Sloan, R., and Warmuth, M.K. (1990). Learning nested differences of intersection-closed concept
classes. Machine Learning, 5, xxx-xxx.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. of the American Statistical
Association, 58, 13-30.

THE STRENGTH OF WEAK LEARNABILITY 227

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished manuscript.
Kearns, M. (1989). The Computational Complexity of Machine Learning. Doctoral dissertation, Department of

Computer Science, Harvard University, Cambridge, /vIA.
Kearns, M., Li, M., Pitt, L., and Valiant, L. 0987). On the learnability of Boolean formulae. Proceedings of

the Nineteenth Annual ACM Symposium on Theory of Computing (pp. 285-295). New York, NY: ACM Press.
~arns, M. and Valiant, L.G. (1988). Learning Boolean formulae or finite automata is as hard as factoring (Technical

Report TR-14-88). Cambridge, MA: Harvard University Aiken Computation Laboratory.
Kearns, M. and Valiant, L.G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata.

Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (pp. 433-444). New York,
NY: ACM Press.

Pitt, L. and Valiant, L.G. (1988). Computational limitations on learning from examples. J. of the Association
for Computing Machinery, 35, 965-984.

Rivest, R.L. 0987). Learning decision lists. Machine Learning, 2, 229-246.
Schapire, R.E. (1989). Pattern languages are not learnable. Unpublished manuscript.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.

