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Abstract. The MEME algorithm extends the expectation maximization (EM) algorithm for identifying motifs 
in unaligned biopolymer sequences. The aim of MEME is to discover new motifs in a set of biopolymer 
sequences where little or nothing is known in advance about any motifs that may be present. MEME 
innovations expand the range of problems which can be solved using EM and increase the chance of finding 
good Solutions. First, subseqnences which actually occur in the biopolymer sequences are used as starting 
points for the EM algorithm to increase the probability of finding globally optimal motifs. Second, the 
assumption that each sequence contains-exactly one occurrence of the shared motif is removed. This allows 
multiple appearances of a motif to occur in any sequence and permits the algorithm to ignore sequences with 
no appearance of the shared motif, increasing its resistance to noisy data. Third, a method for probabilistically 
erasing shared motifs after they are found is incorporated so that several distinct motifs can be found in the 
same set of sequences, both when different motifs appear in different sequences and when a single sequence 
may contain multiple motifs. Experiments show that MEME can discover both the CRP and LexA binding 
sites from a set of sequences which contain one or both sites, and that MEME can discover both the - 1 0  
and - 3 5  promoter regions in a set of E. coli sequences. 
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1. In troduc t ion  

The  p r o b l e m  addres sed  by  this  work  is tha t  of  iden t i fy ing  and cha rac t e r i z ing  sha red  

mot i f s  in a set  of  u n a l i g n e d  gene t ic  or p ro te in  sequences .  A m o t i f  is def ined here  as 

a pa t t e rn  c o m m o n  to a set  o f  nuc le ic  or a m i n o  acid subsequences  w h i c h  share  some  

b io log ica l  proper ty  o f  in te res t  such  as be ing  D N A  b ind ing  sites for  a r egu la to ry  pro te in .  

In c o m p u t e r  sc ience  t e rmino logy ,  the p r o b l e m  is, g iven  a set  o f  s tr ings,  to f ind a set 

o f  non -ove r l app ing ,  app rox ima te ly  m a t c h i n g  subs t r ings .  In this  repor t  we  are c o n c e r n e d  

on ly  wi th  contiguous moti fs .  In  b io log ica l  te rms,  this  m e a n s  tha t  appea rances  o f  a m o t i f  

m a y  di f fer  in po in t  mu ta t ions ,  bu t  inse r t ions  or de le t ions  are no t  a l lowed.  In c o m p u t e r  

sc ience  terms,  this  m e a n s  tha t  the  app rox ima te ly  m a t c h i n g  subs t r ings  m u s t  all h a v e  

the  s ame  length.  A s imp le r  ve r s ion  of  the  p r o b l e m  is, g iven  a da tase t  o f  b i o p o l y m e r  

sequences  be l i eved  to con ta in  a s ingle  sha red  mot i f ,  to locate  the  s tar t ing pos i t ion  in each  

s equence  o f  the  a p p e a r a n c e  o f  the  shared  m o t i f  and  to desc r ibe  the sha red  motif .  This  

relSort addresses  the  m o r e  genera l  p r o b l e m  of  f ind ing  and  desc r ib ing  mul t ip le ,  d i s t inc t  

shared  mot i f s  in a set  o f  b i o p o l y m e r  sequences .  It is no t  a s s u m e d  that  a n y t h i n g  is k n o w n  
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in advance about the width, position or letter frequencies of the motifs, or even how 
many common motifs may exist in a set of sequences. 

Several methods have been presented in the literature which work on problems related 
to discovering multiple, distinct shared motifs in a set of biological sequences. The 
purpose of this research is to extend the range of problems that can be attacked. Hertz 
et al. (1990) presented a greedy algorithm for discovering a single, shared motif that 
is present once in each of a set of sequences. Lawrence and Reilly (1990) extended 
that work by developing an expectation maximization (EM) algorithm for solving the 
same problem. Lawrence et al. (1993) solve the related problem of discovering multiple, 
distinct motifs when the number of occurrences of each motif in each sequence is known 
using a Gibbs sampling strategy. 

This report describes MEME, a new tool intended to help discover motifs when neither 
the number of motifs nor the number of occurrences of each motif in each sequence is 
known. 1 MEME incorporates three novel ideas for discovering motifs. 

First, subsequences which actually occur in the input DNA or protein sequences are 
used as the starting points from which EM converges iteratively to locally optimal 
motifs. This increases the likelihood of finding globally optimal motifs. 

Second, a heuristic modification of the EM algorithm allows the assumption that 
each sequence contains exactly one occurrence of the shared motif to be removed. 
This allows multiple appearances of a motif to occur in any sequence and permits the 
algorithm to ignore sequences with no appearance of a shared motif, which increases 
its resistance to noisy data. 

Third, motifs are probabilistically erased after they are found. This allows several 
distinct motifs to be found in the same set of sequences, both when different motifs 
appear in different sequences and when a single sequence may contain multiple 
motifs. 

1.1. Searching tools versus learning tools 

This section explains the place of MEME, in the spectrum of sequence analysis tools. 
Experts on biological sequence analysis may wish to skip directly to the next section. 

Searching tools. Sequence analysis tools may be divided into two broad categories, 
searching tools and learning tools. GRAIL, BLASTX, PASTA, etc. are searching tools, 
whereas MEME is a learning tool. A searching tool (also called a pattern-matching tool) 
takes as input one or more sequences and a pattern, and decides if the pattern matches 
each input sequence, and if so, where. The pattern may be (i) another sequence, as with 
BLASTX and FASTA, (ii) a consensus subsequence or regular expression defining a motif, 
as with ProSearch (Kolakowski, et al., 1992), or (iii) a more high-level combination of 
features, as with GRAIL (Uberbacher & Mural, 1991). 

Learning tools. A supervised learning tool (also called a supervised pattern-recognition 
tool) takes as input a set of sequences, and discovers a pattern that all the sequences 
share. Supervised learning is often done by humans rather than by software, because 
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it is an open-ended problem that is harder than searching. For example, the PROSITE 
profiles were created by Amos Bairoch by personally examining families of proteins 
(Bairoch, 1993). 

An unsupervised learning tool takes as input a set of sequences, and discovers a pattern 
that s o m e  of the sequences share. Unsupervised learning is harder than supervised learn- 
ing because the space of possible patterns is much larger. The pattern to be discovered 
is not required to be in any given input sequence, so the unsupervised learning algorithm 
must simultaneously look for a cluster of input sequences and a pattern that the members 
of this cluster do have in common. MEME performs unsupervised learning. 

The output of a learning tool, namely a pattern, is often given to a search tool in order 
to find new sequences that exhibit the pattern. However, even if all the members of a 
family of sequences are already known, applying a learning tool to the family can still 
be useful, because examining the patterns that subsets of the family have in common can 
give insight into structure, function, and evolution. 

1.2. The expectation maximization (EM) algorithm 

Lawrence and Reilly (Lawrence & Reilly, 1990) introduced the expectation maximiza- 
tion method as a means of solving a supervised motif learning problem. Their algorithm 
takes as input a set of unaligned sequences and a motif length (W) and returns a prob- 
abilistic model of the shared motif. The idea behind the method is that each sequence 
in the dataset contains a single example of the motif. We shall refer to this model of 
the data as the 'one-occurrence-per-sequence' model or just the 'one-per' model. It is 
assumed that where the motif appears (what its starting offset is) in each example is 
unknown. If this were known, subsequences of length W from each sequence starting 
at the known offset could be aligned, since no insertions or deletions are allowed, and 
the observed frequencies of the letters in each column of the alignment could be used as 
a model of the motif. 

In fact, if each example of the motif is assumed to have been generated by a sequence 
of independent, discrete random variables, then the observed frequencies of the letters 
in the columns are the maximum likelihood estimates of the distributions of the random 
variables. Of course, since the original sequences in the dataset are unaligned, the offsets 
are not known, so they must also be estimated. To do this, the EM algorithm estimates 
the probability that the shared motif starts in position j in sequence i in the dataset, given 
the data and an initial guess at a description of the motif. These probability estimates, 
~ j ,  are then used to reestimate the probability of letter 1 in column c of the motif, Pzc, for 
each letter in the alphabet and 1 < c < W. How the reestimations are done is described 
in the Appendix. The EM algorithm alternately reestimates z and p until p changes very 
little from iteration to iteration. (The notation z is used to refer to the matrix of offset 
probabilities zij. Likewise, p refers to the matrix of letter probabilities pi j . )  

A pseudo-code description of the basic EM algorithm is given below. EM starts from 
an estimate of the model parameters, p, provided by the user or generated at random. 
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1. EM (dataset, W) { 

2. choose starting point (p) 

3. do{ 
4. reestimate z from p 

5. reestimate p from z 

6. } until (change in p < e) 

7. return 
8. } 

The EM algorithm simultaneously discovers a model of the motif (the sequence of 
independent discrete random variables with parameters p) and estimates the probability 
of each possible starting point of examples of the motif in the sequences in the dataset 
(z). By definition (Duda & Hart, 1973), the likelihood of the model given the training 
data is the probability of the data given the model. The EM algorithm finds values of the 
model parameters which maximize the expected likelihood of the data given the model 
p, and the missing data z. For the one-occurrence-per-sequence model of the data used 
by Lawrence and Reilly (1990), the logarithm of the likelihood is 

W 

log(likelihood) = X ~ Z ftj log(plj) + N(L  - W) ~ fro log(plo) 
j = l  lCL 1E• 

1 
+ N l O g ( L _  W + I  ) 

where N is the number of sequences in the dataset, L is the length of the sequences, W 
is the length of the shared motif,/~ is the alphabet of the sequences, plj is the (unknown) 
probability of letter l in position j of the motif, Pro is the (unknown) probability of letter 
l in all non-motif positions, fij is the observed frequency of the letter 1 in position j of 
the motif, and flo is the observed l in all non-motif positions of the sequences. 

It has been shown that expectation maximization algorithms find values for the model 
parameters at which the likelihood function assumes a local maximum (Dempster, et al., 
1977). It is reasonable to assume that the correct solution to the problem of characterizing 
the shared motif occurs at the global maximum of the likelihood function. For this 
reason, all else being equal, parameter values for the model which give higher values of 
the likelihood function are considered better solutions to the problem. ~ 

1.3. Limitations of  EM and the one-occurrence-per-sequence model 

EM and the one-per model suffer from several limitations. First, it is not clear how to 
choose a starting point (an initial value of p) nor when to quit trying different starting 
points. This makes it difficult to be satisfied that the correct shared motif has been found. 
Second, the one-per model assumes that each sequence in the dataset contains exactly one 
appearance of the shared motif. This means that sequences with multiple appearances 
will under-contribute, and sequences with no appearances will over-contribute to the 
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characterization of the motif. Having many sequences with no appearances of the motif 
in the dataset may make it impossible for EM with the one-per model to find the shared 
motif at all. Finally, EM with the one-per model assumes that there is only one shared 
motif in the sequences, and does not keep looking for further motifs after characterizing 
one. This makes EM with the one-per model incapable of finding motifs with insertions 
of variable length and incapable of discovering multiple motifs that may occur in the 
same or different sequences in a given dataset. Eliminating or reducing these limitations 
of EM with the one-per model would make the method less susceptible to noise in the 
dataset, able to find more complex patterns in the data, and last but not least, useful for 
exploring datasets which may contain instances of several different motifs. 

The algorithm described in this report, MEME, extends the EM algorithm to overcome 
the limitations described above. MEME chooses starting points systematically, based on 
all subsequences of sequences in the training dataset. It allows the use of either the one- 
per model or a different model which eliminates the assumption of one sequence/one 
occurrence and allows each sequence to contain zero, one or several appearances of the 
shared motif. We call this new model the 'n-occurrences-per-dataset' model or just the 
'n-per' model, because the it assumes that the dataset contains exactly n occurrences 
of the motif, where n is specified by the user. Finally, MEME probabilistically erases 
the appearances of a motif after it is found, and continues searching for further shared 
motifs in the dataset. 

The MEME algorithm with the n-per model was tested on two datasets. The first was a 
dataset combining 18 E. coli sequences containing CRP binding sites (Lawrence & Reilly, 
1990) and 16 sequences containing LexA binding sites (Hertz, et al., 1990). MEME dis- 
covered the LexA binding site on its first pass and the CRP binding site on its second pass. 
The second dataset contained 231 E. coli promoter sequences (Harley & Reynolds, 1987). 3 
MEME discovered the TATAAT and TTGACA consensus sequences 4 on the first and second 
passes, respectively. This demonstrates the ability of MEME to avoid local optima, to 
tolerate large number of sequences which do not contain the motif, and to find multiple 
motifs in a single dataset. 

2. The MEME algorithm 

The MEME algorithm has at its core a modified version of the EM algorithm (Lawrence & 
Reilly, 1990). The pseudo-code for the algorithm is given below. In the inner loop, an 
algorithm based on the EM algorithm is run repeatedly with different starting points for 
the chosen model (either one-per model or n-per model). We shall refer to this particular 
application of the EM algorithm as simply 'EM' in what follows. The starting points 
are derived from actual subsequences which occur in the input dataset. EM is run only 
one iteration, not to convergence, from each starting point to save time. Each run of 
EM produces a probabilistic model of a possible shared motif. The starting point which 
yields the model with the highest likelihood is chosen and EM is run to convergence from 
this starting point. The model of the shared motif thus discovered is printed. Finally, 
all appearances of the shared motif in the dataset are erased. The outer loop repeats the 
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whole process to discover further shared motifs. 
of these steps of the algorithm in more detail. 

The following sections describe each 

1. MEME (dataset, W, NSITES, P A S S E S )  { 

2. for i = 1 to P A S S E S  { 

3. for each subsequence in dataset { 

4. run EM for 1 iteration with starting point 

5. derived from this subsequence 

6. choose model of shared motif with highest likelihood 

7. run EM to convergence from starting point 

8. which generated that model 

9. print converged model of shared motif 

10. erase appearances of shared motif from dataset 

11. } 
12. } 

13. } 

The output of MEME includes a specificity or log-odds matrix, spec. The log-odds 
matrix has L rows and W columns and is calculated as specij = log(~ij/~oj) for i C Z; 
and j = 1 , . . . ,  W. The information content score of a subsequence is calculated by 
summing the entries in the matrix corresponding to the letters in the subsequence. 5 This 
score gives a measure of the likelihood of the subsequence being an instance of the 
motif versus an instance of the "background". Together with a suitable threshold, the 
information content score, can be used to classify subsequences in new sequences not 
part of the training set. 

2.1. Using subsequences as starting points for EM 

Given different starting points (i.e., initial letter probability matrices p) the EM algorithm 
may converge to different final models. These models are local maxima of the likelihood 
function described earlier. The correct model for the shared motif is expected to be the 
model which globally maximizes the likelihood function, but EM is not guaranteed to 
find the global maximum, only a local maximum. Previous authors (Lawrence & Reilly, 
1990; Cardon & Stormo, 1992) have recommended using several starting points for EM 
and choosing the model with the highest likelihood, but how to choose the starting points 
has not been discussed in detail. 

One might try using randomly chosen letter frequency matrices as starting points, 
but the sequences in the dataset provide a way to choose more intelligent ones. Since 
our models for motifs do not allow for insertions or deletions, the optimal model must 
agree very well with some contiguous subsequences of the sequences in the dataset--  
the instances of the motif in the sequences. A good way to search the space of possible 
starting points for EM should thus be to convert each subsequence of length W into a letter 
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probability matrix and use each such matrix as a starting point. This is the approach used 
by MEME. Since the starting point letter frequency matrices obtained from subsequences 
corresponding to the actual occurrences of the shared motif should be "close" to the 
correct letter probability matrix (i.e., model), EM should tend to converge to the global 
optimum when run with them as starting points. 6 

For example, suppose the unknown optimal value of p for the shared motif that we are 
trying to discover using MEME is actually 

letter position in motif 
1 2 3 4 5 

A 
C 
G 
T 

0.1 0.8 0.1 0.5 0.6 0.1 
0.1 0.1 0.1 0.3 0.2 0.1 
0.2 0.0 0.1 0.1 0.1 0.1 
0.6 0.1 0.7 0.1 0.1 0.7 

and the consensus sequence is T A ~ T .  Presumably, this sequence or something close to 
it (i.e., with few mutations) occurs in at least one of the sequences in the dataset. It is 
reasonable to postulate that if we choose as a starting point for EM a letter probability 
matrix derived in some simple manner from the consensus sequence, or a subsequence 
similar to it, then EM should tend to converge to the optimal model. If we try all 
of  the subsequences (of length six in this example) of the sequences in the dataset, it 
is reasonable to assume that at least one of  them will be "close" to TATAAT and will 
cause EM to converge to the optimal model. (Note that MEME does not use all possible 
subsequences of a given length, just the ones which actually occur in the dataset.) 

The question remains of how to convert a subsequence into a letter probability ma- 
trix. One cannot simply convert it to a matrix with probability 1.0 for the letter in the 
subsequence and 0.0 for ~/11 others, i.e., convert TAT~T to 

letter position in motif 
1 2 3 4 5 

A 
C 
G 
T 

6 

because the EM algorithm cannot move from such a starting point. With such a starting 
point, all offset probabilities will be estimated to be 0.0 except for subsequences which 
match the starting point subsequence exactly. This will cause reestimation of the letter 
frequencies to yield the starting point again. 

An effective, if somewhat arbitrary solution is to fix the frequency of the letter in the 
subsequence at some value 0 < X < 1, and fix the frequencies of the other letters at 
(1 - X ) / ( M -  1) where M is the length of  the alphabet. This ensures that the frequencies 
in each column sum to 1.0 and that, for X close to 1.0, the starting point is "close" to the 
subsequence. The results reported in this paper are for X = 0.5. Values of X between 
0.4 and 0.8 worked approximately equally well (experimental data not shown). With this 
value of X,  the starting point for EM generated from the subsequence TAT.Z~T is 

0.0 1.0 0.0 1.0 1.0 0.0 
0.0 0 .0  0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
1.0 0.0 1.0 0.0 0.0 1.0 



58 T.L. BAILEY AND C. ELKAN 

letter 

A 
C 
G 
T 

position in motif 
1 2 3 4 5 6 

0.17 0.5 0.17 0.5 0.5 0.17 
0.17 0.17 0.17 0.17 0.17 0.17 
0.17 0.17 0.17 0.17 0.17 0.17 
0.5 0.17 0.5 0.17 0.17 0.5 

It would be highly expensive computationally to run EM until convergence from every 
possible starting point corresponding to some subsequence of length W in the input 
dataset. It turns out that this is not necessary. EM converges so quickly from subse- 
quences which are similar to the shared motif that the best starting point can often be 
detected by running only one iteration of EM. As will be described below, MEME was 
able to find shared motifs when run for only one iteration from each possible subse- 
quence starting point, and then run until convergence from the starting point with the 
highest likelihood. In other words, MEME runs EM for specified number of iterations 
(one iteration in all the results reported here) on each subsequence starting point, chooses 
the starting point that yields the highest likelihood, and then runs EM to convergence 
from this starting point. 

Since each iteration of the EM algorithm takes computation time roughly linear in the 
size of the dataset, and the number of subsequences is linear in the size of the dataset, 
MEME takes time O(n 2) where n is the size of the dataset in characters. 

2.2. Dealing with multiple appearances of a shared motif 

MEME allows the user to. specify that either the one-per model or the n-per model be 
used. With the one-per model, MEME uses the EM algorithm of Lawrence and Reilly 
(Lawrence & Reilly, 1990) to fit the model to the dataset. To fit the n-per model, a 
heuristic modification of the EM algorithm is used. 

The one-per model assumes that each sequence in the dataset contains exactly one 
appearance of the shared motif to be characterized. This assumption determines the way 
in which the offset probabilities are reestimated. The reestimation procedure ensures 
that the offset probabilities for each sequence sum to 1.0. This means that if a given 
sequence has more than one appearance of the shared motif, it cannot contribute any more 
to the reestimation of the letter frequencies than a sequence with only one appearance. 
Additionally, if a sequence has no appearances of the shared mot i f - -a  common event 
when exploring for new shared motifs--i t  contributes erroneously to the reestimation of 
the letter frequencies. 

MEME modifies the EM algorithm a when fitting the n-per model to a dataset. Instead 
of normalizing the reestimated offset probabilities to sum to 1.0 for each sequence, all 
offset probabilities are normalized to sum to a user-supplied value NSITES, subject to 
the constraint that no single offset probability may exceed 1.0. This normalization is 
done over all sequences simultaneously, not sequence by sequence. The intent is for 
NSITES to be the expected number of appearances of the shared motif in the dataset. 
If  NSITES is set equal to the number of sequences in the dataset, it is possible for the 
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n-per model to get approximately the same results as the one-per model on a dataset 
that has one appearance of  the shared motif  in each sequence. For datasets with the 
appearances of  the motif distributed other than one per sequence, the MEME with the 
n-per model is able to choose models that assign the offset probabilities in any fashion 
which satisfies the two constraints mentioned above. 

The relaxation of  the one motif appearance per sequence constraint in the n-per model 
allows MEME to benefit from sequences with multiple appearances of the shared motif. 
It also can help alleviate the problem of sequences which do not contain the motif 
blurring its characterization. When NSITES is lower than the number of  sequences in 
the dataset, MEME can assign very low offset probabilities to all positions in a sequence 
that does not contain the motif at all. By contrast, the one-per model must assign offset 
probabilities summing to 1.0 to each sequence in the dataset. The effect of various 
settings for NSITES is discussed in Section 4.3. In summary, the exact value chosen 
for NSITES is not critical, so it is not necessary to know in advance exactly how many 
times a motif is present in the dataset. 

One side effect of  allowing a single sequence to have offset probabilities that sum 
to more than 1.0 is that long repeated sequences are seen by MEME using the n-per 
model as though they were multiple appearances of a shorter sequence. For example, 
if W is 6, the sequence a_z~z_a.a.z~aA is treated by the n-per model roughly as though it 
were three appearances of the sequence A3.AAAA. This is SO because the n=per model 
might allow offsets 1, 2 and 3 of the sequence to have the maximum probability of 1.0. 
(The one-per model would not allow this, since the total offset probability fo r  a single 
sequence must sum to 1.0.) This is problematic because it is far more surprising to find 
3 non-overlapping occurrences of  the sequence Amx_z~ than to find one occurrence of 
sequence ~ .  So, we would like MEME to search for NSITES non-overlapping 
occurrences of  the motif. To overcome this difficulty, MEME enforces an additional 
constraint when calculating the offset probabilities for the n-per model. It renormalizes 
the offset probabilities so that no W adjacent offsets have probabilities that sum to greater 
than 1.0. This essentially makes the n-per model treat sequences like ~ the same 
way as the one-per model does, assigning at most probability 1/3 to each of  the three 
offsets at which identical subsequences ~ start. 

2.3. Finding several shared motifs 

When a single dataset of  sequences contains more than one distinct shared motif, EM with 
the one-per model cannot directly find more than one of  them. If  the motifs have some 
similarity, EM may always converge to the most conserved motif. 7 Another possibility is 
that EM may converge to a model that describes part of the most conserved motif-- i ts  left 
or right side for instance. The MEME algorithm solves this problem by probabitistically 
erasing the shared motif found by EM and then repeating EM to find the next shared 
motif. By effectively removing each motif as it is found, MEME is able to find the next 
motif without interference from the more conserved motifs found first. 

The manner in which MEME erases a motif is designed to be as continuous as possible. 
New variables w~j are defined which associate a weight with position j in sequence i. The 
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weights represent the probability that the given position in the given sequence is not part 
of a motif previously discovered by MEME. The weights are all set initially to 1.0. After 
MEME discovers a shared motif, the offset probability z~j gives the probability that an 
appearance of the motif starts at a position j in sequence i. So, assuming independence, 
the probability that position k in sequence i is not part of the newly discovered motif 
is the product of (1 - zi j )  for all j between k - W and k. So the old value of wij  is 
updated by multiplying it by the probability that no potential motif which overlaps it is 
an example of the newly discovered shared motif. 

The wij  are used in reestimating the letter frequencies. Instead of summing the offset 
probabilities z~j, the weighted offset probabilities w~j .  z~j are summed. To understand 
how the weighting scheme effectively erases previously discovered motifs, suppose that 
MEME has discovered one motif and is looking for the second. Suppose position j in 
sequence i was the start of an appearance of the first motif found. Then the new weights 
wij  through wi , ( j+w-1)  will all be less than 1 - zij.  Hence they cannot contribute 
much to the reestimation of p and are effectively erased. Notice that if a position only 
matches the discovered motif poorly, then zij  will be low, so the weight for that position 
will remain fairly high. The degree to which a position is erased is proportional to the 
certainty (z~j) that it is part of a previously discovered motif. This makes MEME less 
sensitive to chance similarities than if a match threshold were set and all positions with 
zij  value above that threshold were completely erased. 

3. Experimental results 

This section describes experiments using MEME that were conducted on two datasets. In 
all cases, the model used by MEME was the n-per model. The first dataset, which will be 
referred to as the CRP/LexA dataset, comprises DNA fragments which contain binding 
sites for the CRP and LexA regulatory proteins. The CRP/LexA dataset consists of all 
of the samples in the CRP dataset plus all the samples in the LexA dataset, which are 
described below. The second dataset, which will be referred to as the promoter dataset, 
contains samples of prokaryotic promoter regions. It is also described in detail below. 
An overview of the contents of the datasets is given in Table 1. 

The CRP dataset is taken from Stormo and Hartzell (1989) who, in turn, derived it 
from Berg and von Hippel (1988) and de Crombrugghe et al. (Benoit et al., 1984). It 
contains 18 DNA fragments from E. coli each believed to contain one or more CRP 
binding sites. The dataset contains 18 CRP binding sites which had been verified by 
DNase protection experiments when the dataset was compiled. Some of the fragments 
contain putative CRP binding sites which have been determined by sequence similarity 
to known binding sites only. Each fragment in the dataset contains 105 bases and the 
fragments are not aligned with each other in any particular way. 

The LexA dataset is taken from Table I in Hertz, et al. (1990). It contains 16 DNA 
fragments each believed to contain one Or more LexA binding sites. The dataset contains 
11 LexA binding sites which had been verified by DNase protection experiments when 
the dataset was compiled. An additional 11 putative LexA binding sites, as determined 
by sequence similarity to known binding sites, are also present in the dataset. Most of 
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the fragments contain 100 bases preceding and 99 bases following the transcription start 
position of a gene. Three of the fragments are shorter because 200 bases flanking the 
start position of the gene were not available. One of the samples in the LexA dataset 
overlaps a sample in the CRP dataset. The overlap includes the known CRP site. 

The promoter dataset is taken from Cardon and Stormo (1992). It contains 231 E. coIi 
DNA fragments each believed to contain promoter regions. This dataset was originally 
compiled by Harley and Reynolds (1987), and contained 288 fragments, but Cardon and 
Stormo omitted a number of fragments that were from highly redundant sequences or 
known to be mutant promoters. All the fragments roughly comprise positions - 5 0  to 
-t-10 with respect to the start of transcription, s Previous work such as that of Harley 
and Reynolds (1987) has shown that the promoter motif seems to consist of two highly 
conserved sub-motifs of width 6 each, separated by a variable-length spacer. The spacer 
is usually 15, 16, 17 or 18 bases long. Although MEME cannot directly model such a 
variable-length motif, it can indirectly by discovering the two highly conserved ends of 
such motifs. 

Table 1. Overview of the contents of the datasets. 

dataset samples average length of  samples proven CRP sites proven LexA sites 

CRP 18 105 18 0 
LexA 16 192 1 11 
CRP/LexA 34 150 19 11 
promoter 231 58 NA NA 

3.1. MEME can discover two different binding site motifs 

MEME was run for 5 passes on the CRP/LexA dataset with W = 20, NS IT ES  = 17. 
The value for W was chosen based on prior knowledge from the literature that this is 
the approximate size of both the CRP and LexA binding sites in DNA base-pairs. 9 The 
value for N SIT ES  was chosen arbitrarily as half the number of sequences in the dataset, 
because there are roughly that many footprinted sites of each type in the dataset. As 
mentioned previously, the exact value of N S I T E S  is not critical for MEME to discover 
the motifs. The first pass of MEME yielded an excellent model for the LexA binding site. 
The second pass produced a model for the CRP binding site. Subsequent passes produced 
models of unknown significance. The results of MEME on CRP/LexA are summarized 
in Table 2. 

The model produced by the first pass of MEME on CRP/LexA identified and charac- 
terized the LexA binding site extremely well. The quality of the model can be judged 
partly from the degree to which it correctly identifies the known LexA binding sites in 
the dataset. One way of using the model produced by MEME is to examine the values 
of z~j to see which positions in which samples in the dataset are given high probabilities 
of being the start of a motif. MEME prints the four highest values of zij for each sample 
in the dataset after each pass. Table 3 shows the values of zij after pass 1 of MEME 
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Table 2. The models found by each pass of MEME on the CRP/LexA dataset can be visually sum- 
marized by the consensus sequence derived from the p matrix by choosing the letter with the highest 
probability. The values of information content and log(likelihood) give a qualitative idea of the sta- 
tistical significance of the model. Higher values imply the model is more significant. The models 
found for LexA and CRP on passes 1 and 2 of MEME have considerably higher log(likelihood) and 
information content than the models found on later passes. Note that W = 20 and NSITES = 17. 

pass starting subsequence final consensus Imod~l log(likelihood) 

I TACTGTATATAAAACCAGTT TACTGTATATATATACAGTA 13.206 -435.174 

2 TTATTTGCACGGCGTCACAC TTTTTTGATCGGTTTCACAC 9.087 -515.837 

3 ATTATTATGTTGTTTATCAA TTTATTTTGATGTTTATCAA 6.527 -539.083 

4 TGCGTAAGGAGAAAATACCG TGCGTAAGAAGTTAATACTG 7.912 -531.419 

5 CAAATCTTGACATGCCATTT CAAATATGGAAAGGCCATTT 8.027 -533.662 

for the known LexA binding sites. It can be easily seen that the model found in the 
first pass characterizes the LexA binding site. Furthermore, all other values of zij were 
below 0.17, so the model appears to be very specific for the LexA binding site. 

The consensus sequence for the model discovered in pass 1 of MEME on the CRP/LexA 
dataset also agrees exceedingly well with the LexA binding site. MEME prints the 
consensus (i.e., the most probable letter for each position in the motif as determined 
from p) after each pass. The consensus after pass 1 was 
TACTGTATATATATACAGTA, which matches the consensus reported by Hertz, et al. (1990) 
and is a perfect DNA palindrome. 

Another way of seeing how well the model that was learned during pass 1 of MEME 
characterizes the LexA binding sites is to plot the information content score of each 
subsequence of the input data. Figure 1 shows the information content scores of both the 
CRP and LexA samples under the first pass model. (All scores below zero have been set 
to zero in the figure to make it easier to interpret.) It can easily be seen that the model 
gives the known binding sites high scores while most other subsequences receive low 
scores. 

On the next pass, MEME discovers the CRP motif. The consensus sequence it reports 
for pass 2 is TTTTTTGATCGGTTTCACAC, which agrees well with the consensus found with 
one-per model and reported in Lawrence & Reilly (1990). More significantly, the model 
characterizes the CRP motif well, judging from the values of z~j for the various positions 
in the samples in the dataset. Table 4 shows the values of zij found during pass 2 on the 
CRP/LexA dataset. According to (Lawrence & Reilly, 1990), the CRP dataset contains 
24 known CRP binding sites, 18 of which had been verified by protection experiments. 
The value of zij for eight of these is above 0.99 in the model, while eleven have zij 
values above 0.1. It turns out that three of the samples from the LexA dataset also 
contain CRP binding sites. The sample labeled colicin E1 in the LexA dataset is actually 
from the same sequence and overlaps the sample labeled cole 1 in the CRP dataset. The 
overlap contains the CRP motif. LexA samples colicin Ia and colicin Ib also appear to 
contain CRP sites which are virtually identical to the colicin El/cole 1 CRP site. For 
these sites zij is over 0.999, which is extremely high. Because of the overrepresentation 
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Table 3. Values of zi j  for the model found by MEME in pass 1 on the CRP/LexA 
dataset at the positions of the known LexA sites. Virtually all of the known 
sites have very high values of Zij compared to the rest of the positions in the 
samples. The table shows the positions of the known sites (site I, site 2 and 
site 3) and the values of zij of the model at those positions. All other positions 
have values of zi j  below 0.17. Although the site at position 112 in the colicin 
E1 sequence has zi j  value only 0.05, this is one of the four highest zij values 
for this sequence. No proven sites are known for himA and uvrC and zi j  for 
all positions in those samples was very low, less than 0.0001. 

sample site 1 z i j  site 2 z i j  site 3 z i j  

cloacinDF13 97 a 0.998684 
colicin E1 97 0.948441 112 0.051543 
colicin Ia 99 a 0.998709 
colicin Ib 99 a 0.990472 
recA 71 0.999987 
recN 71 0.999988 93 0.865704 
sulA 85 a 0.999990 
umuDC 91 0.999931 
uvrA 60 0.987786 
uvrB 71 0.999972 
uvrD 102 0.998539 
colicin A 34 a 0.683563 48 a 0.314723 
lexA 76 0.999982 55 0.999933 
mueAB 49 a 0.999978 
himA 
uvrC 

111 a 0.134281 

alndicates site known only by sequence similarity to known sites. 

o f  this part icular  "vers ion"  o f  the C R P  binding site, the mode l  learned dur ing pass 2 

seems to be biased towards represent ing the vers ion of  the C R P  binding site present  in 

the col ic in  genes.  This  may  explain why the mode l  does  not  fit all o f  the C R P  sites 

equal ly  well .  

F igure  2 shows the informat ion  content  scores of  the C R P / L e x A  dataset computed  with 

the specificity matr ix  learned during pass 2 o f  MEME. Al though  the mode l  is not  as well  

defined as that o f  pass 1, it c learly matches  the known C R P  sites to a large degree.  

3.2. M E M E  c a n  d i s c o v e r  t wo  p a r t s  o f  a s ing le  b i n d i n g  s i te  

MEME was run for 5 passes on the promoter  dataset with W = 6, N S I T E S  = 231. The 

value  for W was chosen based on prior knowledge  der ived f rom the li terature that this is 

the approximate  size of  both the - 1 0  and - 3 5  regions  of  E. coli  promoters ,  The  value of  

N S I T E S  was chosen based on the assumption that each sample  in the dataset contains 

a promoter.  The  first pass o f  MEME yie lded a mode l  whose  consensus  was TATAAT, 

which is the known - 1 0  region consensus.  The  second pass produced  a mode l  whose  

consensus  was TTTACA, which is very close to the convent ional  - 3 5  region consensus,  
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Figure 1, The information content score of each subsequence of the CRP/LexA dataset using the specificity 
matrix found on pass 1 of MEME. The CRP samples are the short curves at the top, while the LexA samples 
are the long curves at the bottom. Vertical scale is such that highest peak is 24.3 bits. All values below zero 
have been set to zero. 

TTGACA. Further passes produced models of  unknown significance. The results of MEME 
on the promoter dataset are summarized in Table 5. 

The models learned on the first two passes of  MEME on the promoter dataset are 
applied to the first thirty samples in the dataset and the information content score of 
each subsequence in the dataset is plotted in Figures 3 and 4. The base corresponding to 
the start of  transcription of  each sample is at position 50 on the horizontal axis of  each 
plot. A column of peaks at position 37 in Figure 3 shows that the model  identifies the 
- 1 0  consensus region of the promoters. A column of peaks at position 15 of  Figure 4 
confirms that the second model identifies the - 3 5  region of  the promoters, even though 
its consensus sequence is slightly different from the generally accepted one. 

4. Robustness of the MEME algorithm 

The CRP/LexA dataset and the promoter dataset were also used to test the usefulness of  
the various separate ideas entering into the design of the MEME algorithm, and to evaluate 
the sensitivity of the algorithm to the particular values chosen for several parameters. 
Overall, the algorithm appears to be gratifyingly robust. Except  where noted, MEME was 
run using the r~-per model. 
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Table 4. Values of zij for the model found by MEME in pass 2 on 
the CRP/LexA dataset at the positions of the known CRP sites. Of 24 
known CRP sites, eight have very high values of zij, and twelve more 
(those not stated as below some bound) have values of zij among the 
top four zi3 values for the given sequence. The three last three sites 
(labeled b, c, and d) are actually from the LexA dataset, not the CRP 
dataset. The sequence named colicin E1 actually is from the same 
gene as cole 1 and overlaps it in the CRP site region. The site in 
colicin Ia may not have been reported previously, and the colicin Ib 
site was previously reported as being a LexA site. 

sample site 1 zij site 2 zij 

colel 17 < .0004 61 0.999185 
ecoarabob 17 < .0003 55 0.999051 
ecobglrl 76 0.028134 
ecocrp 63 0.998985 
ecocya 50 0.006001 
ecodeop 7 a 0.999845 60 0.018088 
ecogale 42 0.497545 
ecoilvbpr 39 a < .0015 
ecolac 9 0.996939 80 0.002302 
ecomale 14 a 0.997871 
ecomalk 29 a 0.00129 61 0.035443 
ecomalt 41 0.014568 
ecoompa 48 0.177722 
ecotnaa 71 a 0.999222 
ecouxul 17 0.998583 
pbr-p4 53 0.004511 
trn9cat 1 < .0001 84 0.000148 
tdc 78 a 0.506702 
colicin E1 27 b 0.999186 
colicin Ia 13 c 0.999692 
colicin Ib 13 d 0.999333 

alndicates site known only by sequence similarity to known sites. 
bThis LexA dataset sample overlaps CRP sample cole 1. 
CThis site may not have been reported previously. 
dThis apparent CRP site may have been confused with a LexA site 
by Varley and Boulnois (1984) and Hertz et al. (1990). 

4.1. Subsequence-der ived  starting po in t s  work  wel l  with E M  

The  idea  o f  r u n n i n g  E M  for on ly  one  i tera t ion  f rom s tar t ing  po in t s  de r ived  f rom each  

poss ib le  s u b s e q u e n c e  o f  the  input  da tase t  was  tested.  A s  the  fo l l owing  expe r imen t s  

demons t r a t e ,  this  m e t h o d  appears  to work  well  at p red ic t ing  good  s tar t ing poin ts  f rom 

wh ich  to run  E M  to conve rgence .  T h e  e x p e r i m e n t s  cons i s t ed  o f  r u n n i n g  E M  for one  

i tera t ion f r o m  each  poss ib le  s u b s e q u e n c e - d e r i v e d  s tar t ing po in t  on  the  two datasets .  The  

l ike l ihood  o f  each  o f  the  mode l s  thus  ob t a ined  was  p lo t ted  aga ins t  the  s ta r t ing  pos i t ion  of  

the s u b s e q u e n c e  f rom wh ich  the s tar t ing po in t  was  der ived .  Thus ,  one  po in t  was  p lo t ted  

for  each  pos i t ion  in each  sample  in the  dataset .  It was  hoped  tha t  some  s tar t ing po in t s  

wou ld  yie ld  m o d e l s  wi th  s igni f icant ly  h ighe r  l ike l ihood  even  af te r  jus t  one  i terat ion.  



66 T.L. BAILEY AND C. ELKAN 

i 

--4 
A 

^ ~_ 

information conte~t scores of input subsequences 
i ~ i i i i i i 

v 
~ known CRP sites o 

¢.___ 

0 - -  

A 

I I I I i I I I I 

20 40 60 80 i00 120 240 160 180 200 
base number 

Figure 2. The information content score of each subsequence of the CRP/LexA dataset using the specificity 
matrix found on pass 2 of MEME. The CRP samples are the short curves at the top. The strong match of the 
model to three colicin samples in the LexA dataset is seen in the second, third, and fourth long curves. The 
vertical scale is such that highest peak is 18.92 bits. All values below zero have been set to zero. 

Table 5. The models found on each pass of MEME on the promoter dataset are 
summarized as consensus sequences. The - 1 0  and - 3 5  region models were 
found on the first two passes of MEME and have much higher log(likelihood) 
and information content than the other models found. 

pass starting subsequence final consensus 1model  log(likelihood) 

1 TAAAAT TATAAT 4.627 -1409.458 

2 TTTTTT TTTACA 5.388 -1320.208 

3 TGAAAA TGAAAA 4.210 -1657.897 
4 TATACT TATACT 4.191 -1689.300 

5 TTGCGC TTGCGC 4.727 -1709.490 

T h e n  E M  could  be  run  to c o n v e r g e n c e  f r o m  those  s ta r t ing  po in t s  and  the  m o s t  l ikely 

mode l  thus  ob ta ined  could  be  se lec ted  as the  ou tpu t  o f  MEME. 

In the  first expe r imen t ,  the c o m b i n e d  C R P / L e x A  da tase t  was  used. The  MEME algo-  

r i t hm was run  wi th  on ly  one  i terat ion o f  E M  f rom each  poss ib le  s tar t ing point ,  W h e n  

the  log(likelihood) va lues  of  the der ived  m o d e l s  are p lo t ted  aga ins t  the  pos i t ion  on the 

s equence  f rom wh ich  the  s tar t ing po in t  was  der ived ,  i t  can  be seen  in F igure  5 tha t  large 

peaks  in the  l ike l ihood  func t ion  were  occur r ing  in m o s t  o f  the L e x A  samples .  ( I f  the 

i n fo rma t ion  con t en t  scores  were  plot ted,  the  g raph  w o u l d  have  a very  s imi la r  appearance .  

S ince  E M  m a x i m i z e s  the  l ike l ihood  of  the  m o d e l  and  not  its i n fo rma t ion  content ,  log 



UNSUPERVISED LEARNING OF MULTIPLE MOTIFS IN BIOPOLYMERS USING EM 67 

information content scores of input sequences 

l i i l 

A 
A 

A 
A A . 

A A 

I I I I I 

- 5 0  - 4 0  - 3 0  - 2 0  - 1 0  0 1 0  

base number 

Figure 3. The information content score of each subsequence of the first 30 sequences of the promoter dataset 
using the specificity matrix of pass 1 of MEME. The concept learned on pass 1 of MEME on the promoter 
dataset locates the - 1 0  region of the promoters. The vertical scale is such that highest peak is 7.21 bits. All 
values below zero have been set to zero. 

likelihood was chosen as the criterion for choosing starting points. Information content 
could also be used, with similar results.) 

Further investigation showed that the peaks tended to occur at the positions of the 
known LexA binding sites. Figure 6 shows an expanded view of the curve for the 
sample from recN. The recN sample contains three LexA binding sites whose left ends 
are marked on the horizontal axis of the figure. The peaks in the curve occur at or near 
these positions. The same phenomenon was observed for the other LexA samples, except 
for himA and uvrC which previous researchers (Hertz, et al., 1990) have noted do not 
match the LexA consensus 

4.2. "Erasing" one motif is necessary to find another 

On closer inspection of the plots, peaks could also be seen in the curves from the CRP 
samples at positions corresponding to known CRP binding sites. Figure 7 shows the 
expanded view for the CRP sample tnaa. As can be seen in the figure, it is difficult 
to distinguish the peaks generated by starting points derived from subsequences at the 
CRP binding sites from other peaks which do not correspond to any known sites. It 
appears that the other peaks are due to EM starting to converge to a model related to 
the LexA motif. Even a bad model of the highly conserved LexA motifs may have 
log(likelihood) similar to the best model of the CRP binding sites, due to the fact that 
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Figure 4. The information content score o f  each subsequence of the first 30 sequences of the promoter dataset 
using the specificity matrix of pass 2 of ME/VIE. The concept learned on pass 2 of MEME on the promoter 
dataset locates the - 3 5  region of the promoters. The vertical scale is such that highest peak is 7.74 bits. All 
values below zero have been set to zero. 

the LexA binding sites are much more highly conserved than the CRP binding sites. 
The highest peaks produced by subsequences from the CRP samples were much lower 
than the highest peaks produced by the LexA samples. Also, no CRP sample produced 
a peak at a position corresponding to a CRP binding site that was clearly higher than all 
peaks produced from other subsequences of the CRP samples. This shows the necessity 
of somehow eliminating the LexA binding sites from the data in order to be able to 
discover the best starting points from which to run EM to learn a model for the CRP 
binding sites. 

4.3. The expected number of motif appearances is not critical 

If the choice of NSITES were critical to the ability of MEME using the n-per model to 
find one or more distinct motifs or parts of motifs in a dataset, it would be necessary to 
know in advance how many appearances of each motif were in the dataset. This would 
restrict the usefulness of MEME in discovering completely new motifs from sequence 
data alone. Fortunately, MEME discovers models for motifs with NSITES set to a wide 
range of values. So running MEME with just a few values of NSITES will probably 
suffice to find most motifs (if any) which are represented in a dataset. 

MEME was run on the CRP/LexA dataset with various values of NSITES and all other 
parameters fixed. The models found by MEME on each pass were examined to see if they 
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Figure 5. log(likelihood) after one iteration of EM from starting points derived from each possible subsequence 
in the CRP/LexA dataset. EM appears to converge quickly from starting points derived from subsequences at 
or near the LexA binding sites. The short curves at the top are the CRP samples, while the longer curves are 
the LexA samples. The vertical axis for each curve is scaled such that the highest peaks are at -481.6 and the 
lowest valleys are at -642.5. 
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Figure 6. EM finds models of high likelihood when run for one iteration on the CRP/LexA dataset from 
starting points derived from subsequences of sample recN. The starting points correspond well with the known 
LexA binding sites, whose left ends are indicated on the horizontal axis. 
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Figure 7. The log(likelihood) of the model after 1 iteration of EM in MEME varies strongly with the starting 
point. The plot shows the log(likelihood) of Ihe model after one iteration of EM on dataset CRP/LexA run 
from the starting points generated from the subsequences in the sample labeled "tnaa". 



UNSUPERVISED LEARNING OF MULTIPLE MOTIFS IN BIOPOLYMERS USING EM 71 

fit the known consensus sequences for LexA and CRP. Table 6 shows the passes of  MEME 
on which models for LexA and CRP motifs were discovered and the information content 
and log(likelihood) of the models. MEME always finds a model for the LexA motif on 
the first pass. With low NS[TES, it finds LexA more than once, due presumably to the 
fact the LexA binding sites do not get completely erased. (MEME effectively erases at 
most NSITES occurrences of a motif after each pads, so if NSITES = 5 and there are 
fifteen LexA binding sites, there are still enough left for pass 2 to find another model of 
the LexA motif.) MEME found a model of  the CRP motif within four passes for all values 
of  NSITES tried except for NSITES = 5. Usually, CRP was the second model found. 
While the values of  information content and log(likelihood) of the LexA models were 
always much higher than those of all other models found by MEME, this was not always 
true for the CRP models. Only when NSITES was close to the actual number of  known 
CRP binding sites in the dataset was the information content and log(likelihood) of the 
CRP model much higher than for the other models (of unknown biological significance) 
found by MEME. 

4.4. The n-per model is less sensitive to noise than the one-per model 

The removal of  the one-motif-appearance-per-sequence assumption was intended, among 
other things, to make the n-per model less sensitive to noise than one-per model. For 
example, if it is suspected that one or more of the sequences in a dataset is noise (i.e., 
does not contain an appearance of a motif), NSITES can be set to a value which is 
less than than the number of  sequences in the dataset. If  MEME correctly locates just 
the appearances of  the motif, the model found will have higher log(likelihood) than that 
found by using the one-per model which is forced to choose an appearance in every 
sequence in the dataset. To test this assumption, MEME was run with both the one-per 
model and the n-per model on datasets which contained varying numbers of  randomly 
generated sequences (with NSITES set to the same, fixed value each time). The random 
sequences had the same letter frequencies as the dataset as a whole, and they were the 
same length. The datasets used were CRP and LexA with various numbers of  random 
sequences added. In both cases, MEME with the n-per model learned the correct concept 
on the first pass from datasets with more random sequences than the MEME using the 
one-per model could tolerate. MEME with the n-per model learned a model for the CRP 
binding site with 30 random sequences added to the 18 sequences of  the CRP dataset. 
(It learned the model even with 50 random sequences, although then it learned it on 
the second pass.) MEME with the one-per model was not able to learn a LexA binding 
site model with more than 60 random samples added to the dataset, and it learned an 
"off-center" model when more than 20 random samples were in the dataset. MEME with 
the n-per model, however, learned the correct LexA model even with 80 random samples 
added to the dataset. 

Figure 8 shows the information content of  the CRP and LexA models learned by MEME 
with the n-per model and the one-per model on the first pass from datasets with various 
numbers of  random sequences added.- The CRP models learned with the n-per model also 
consistently had higher information content than those learned with the one-per model. 
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Table 6. MEME finds models of the LexA and CRP binding sites when N S I T E S  has values 
between 10 and 35. When N S I T E S  is above 10, LexA and CRP are usually found on the 
first two passes. Only with N S I T E S  = 5 did MEME fail to find CRP on any of the first 
five passes. 

NSITES pass consensus Imoa~t log(likelihooD mot@ 

5 1 ATACTGTATATAAAAACAGT 8.151 -154.337 LexA 
2 AATACTGTATATGTATCCAG 7.667 -158.139 LexA 
3 TGTGAAAGACTGTTTTTTTG 6.968 -161.024 ? 
4 ACTATCATCAAATCTTGACA 5.406 -169.906 ? 

5 GATGCGTAAGCAGTTAATTC 6.280 -167.133 ? 

i0 1 TACTGTATATAAAACAGTA 11.740 

2 TAATACTGTATATGTATCCA 7.318 

3 GTGAAAGACTATTTTTTTGA 8.460 

4 TTTCTGAACGGTATCACAGC 8.145 

5 AAGCAGATTATGCTGTTGAT 6.895 

-271.797 LexA 
-319.596 LexA 
-303,710 ? 
-317.833 CRP 
-318.830 ? 

15 TACTGTATATATATACAGTT 13.513 

TTTTTTGAACGATTTCACAT 9.198 

TTTATTTTGATGTTTATCAA 6.620 

TGCGTAAGAAGTTAATACTG 7.947 

CAAAAATGGAAAGCCATTTT 7.292 

-379.939 LexA 
-454.496 CRP 
-475,009 ? 
-471.933 ? 
-481.090 ? 

20 1 AATACTGTATATATATACAG 12.883 

2 TTTTTGAACGGTTTAAAATT 8.237 

3 ATTATTGTGATGTTGATTAT 7.075 

4 TGCGGAAGCAGATAATACTG 8.042 

5 ATGAAAGTCTACATTTTTGT 7.042 

-520.728 LexA 
-603.571 CRP 
-634.142 ? 
-627,719 ? 
-638,444 ? 

25 TACTGTATATATATACAGTA 12.161 

TTTATTTTGATGTTTTTCAA 7.797 

TTTCTGAAAGGTATAACATC 7.739 

CAAAAATGGAAAAGCAATTT 7.676 

TGCGTAAGAAGATAATACTG 7.253 

-669,214 LexA 
-760.468 ? 

-786.765 CRP 
-789.667 ? 
-803.956 ? 

30 I TACTGTATATATATACAGTA 11.087 

2 TTTTTGTGATCTGTATCACA 7.842 

3 CAAAAATGGATAACCATTTT 7.529 

4 TATGCGTAAGCAGTAAAATT 7.401 

5 TGAGGATGATAACGAATATC 6.820 

-828.649 LexA 
-929.059 CRP 
-952,776 ? 

-953.792 ? 
-975.923 ? 

35 1 TACTGTATATATATACAGTA 10.300 

2 ATTATTGTGATGTTGATCAT 7.247 

3 CAAAAATGGAAAACCATTTT 7.425 

4 TTTCTGACCCAGTTCACATT 7.717 

5 ATGCGTAAGCAATTTATTCA 6.826 

-995,800 LexA 
-1092.196 CRP 
-1112.207 ? 
-1104.486 CRP 
-1135.477 ? 
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Figure 8. The information content of the LexA and CRP models found on the first pass of MEME with the 
n-per model and the one-per model, run separately on the CRP and LexA datasets with different numbers 
of random examples added. The comparative advantage of the n-per model is clear. Especially with motifs 
whose occurrences are highly conserved, the n-per model finds very good models even when many sequences 
not containing the motif are present. MEME was run with W = 20 and N P A S S E S  = 1. N S I T E S  was 
set to 15 for the n-per model. 

This was true even for the model learned with no random sequences added to the dataset. 

Presumably, this is indicative of  the fact that the n-per model is taking advantage of  the 

sequences with multiple appearances of  the CRP site. The models learned with the n-per 

model for LexA were extremely robust to the number of  random samples added to the 

dataset. There was almost no decrease in the information content no matter how many 

random samples were present. The one-per model, on the other hand, found models with 

lower information content when more random samples were in the dataset. 

It is clear from Figure 8 that MEME using the n-per model will find a set of highly 

conserved binding sites even in datasets where the vast majority of the sequences do not 

contain it. The one-per model suffers from the fact that it must always average in one 

supposed motif  appearance from each sample. MEME with the n-per model is thus able 

to deal with a particular type of  noise--samples  containing no motif  appearances-- i f  a 

good estimate of the true number of  motif  appearances ( N S I T E S )  is available. 
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5. Discussion 

The MEME algorithm demonstrates the power of several new ideas. Subsequence-derived 
starting points have been shown to be a powerful way of selecting starting points for 
EM, and may be useful with other methods as well. Since EM tends to converge quickly 
from good starting points, MEME saves a great deal of time by only running EM for one 
iteration from each starting point and greedily selecting the best starting point based on 
the likelihood of the learned model. The modifications to the EM algorithm which allow 
MEME to drop the assumption that each sequence contains exactly one appearance of a 
motif and fit the n-per model to a dataset have been shown to give MEME the ability 
to discover motifs in datasets which contain many sequences which do not contain the 
motif. Finally, the probabilistic weighting scheme used by MEME to erase appearances 
of the motif found after each pass was demonstrated to work well at finding multiple 
different motifs as well as motifs with multiple parts. 

The MEME algorithm should prove useful in analyzing biological sequence data. It 
is a robust tool for discovering new motifs from sequence data alone when little or no 
prior knowledge is available. When MEME is used to discover motifs from sequence 
data alone, it is performing unsupervised learning. Effectively, MEME finds clusters 
of similar subsequences in a set of sequences. Some measure of the unlikeliness of a 
cluster, information content of the model for example, can then be used to decide if other 
methods (i.e., wetlab experimentation) should be applied to verify that the sites which 
match the model actually are biologically related. Plots of information content scores of 
various positions of the sequences in the dataset such as in Figure 1 and Figure 2 can 
also be helpful to a biologist for discovering which clusters are significant and which 
may be statistical artifacts. 

When MEME is used with a dataset of sequences each of which is known to contain 
a motif, such as the promoter dataset, it is performing supervised learning. Because the 
models MEME learns do not allow a motif to have variable length (i.e., no insertions or 
deletions are allowed), MEME is limited to learning a restricted class of motifs. It may 
be possible to use the multiple models learned by MEME on passes through the dataset as 
features for another learning algorithm. For example, a decision tree learner such as ID3 
(Quinlan, 1986) or CART (Breiman et al, 1984) could use the models learned by MEME 
on the promoter dataset as features to learn a classification rule for E. coli promoters. 
Since the first two passes of MEME found models for the - 1 0  and - 3 5  regions of the 
promoter, this approach should have a high chance of success. Another promising idea is 
to use the short motifs learned by MEME to construct starting points for hidden Markov 
models. 

The innovations added to the EM algorithm in MEME can also be used with hidden 
Markov models (HMMs) (Haussler, et al., 1993). The idea of using subsequence-derived 
starting points may be adaptable for use with HMMs. The method used by MEME for 
probabilistically erasing sites after each pass would certainly be easy to add to the standard 
forward/backward HMM learning algorithm. It should also be possible to design a HMM 
which, like the n-per model, eliminates the assumption of one motif per sequence. It may 
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also be possible to adapt MEME innovations to learning stochastic context free grammars 
for biopolymer concepts (Sakakibara, et al., 1993). 

MEME discovered CRP sites in the colicin Ia and colicin Ib samples. The site in colicin 
Ib was mentioned in Varley and Boulnois (1984) as being either a LexA site or possibly 
a CRP site. Hertz, et al. (1990) appear to have classified it as a LexA site. The results 
reported here indicate that the site is probably a CRP binding site, not a LexA binding 
site: the information content score for the site under the CRP model was around 16, 
whereas it was less than 1 under the LexA model. No mention of the CRP site found in 
colicin Ia was found in the literature. 
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Appendix 

Reestimating p and z for the one-per and n-per  models. 

During each iteration of EM, the values of the letter probabilities of the motif model p, 
and of the offset probabilities z, must be reestimated. With the one-per model, the z 
values are reestimated using Bayes' rule from the current estimate of p. For both models, 
given the values of z, p is estimated as the expected values of the letter frequencies. 
How this is done is described below. 

To describe the EM algorithm for the two model types formally, the following defini- 
tions are useful. Let N be the number of sequences, W be the length of the motif, and 

L be the length of each sequence (assume all are of the same length). Define -(q) z~j as the 
estimate after q iterations of EM of the probability that the site begins at position j in 

sequence i given the model and the data. Let pl~ ) be the estimate after q iterations of 
EM of the probability of letter l appearing in position k of the motif. Let Si be the ith 
sequence in the dataset and S~j be the letter appearing in position j of that sequence. 
Define an indicator variable Yij that equals 1 if the site starts at position j in sequence 
i, and 0 otherwise. 

We ignore the probability of the letters outside of the motif, and only consider the 
probability of the letters in the motif. For both model types, EM must calculate the 
probability of sequence Si given the motif start and the model. This can be written as 

w 

P(S~IY~j = 1,p (q>) = 1-I P}q) k,k 
k=l 
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where the sequence S~ has letter Ik at position j + k - 1, i.e., Si,j+k-1 = lk. This forms 
the basis for calculating z (q). 

With the one-per model, Bayes'  rule is used to estimate z(q) from P(Si lY i j  = 1, p(q)). 
Bayes'  rule states that 

P ( B I A ) P ( A )  
P ( A I B  ) - P(B) 

SO 

z(~) = p (Y~ j  11 p(~), s~) = P ( & l Y ~ j  = 1, p(q))P°(Yij = 1) 
~J = v , L -  w+~  P(S~lY~ 1, p(q))P°(Yik 1)  

/ ~ k = l  ~ -  = 

where P°(Yi j  = 1) is the prior probability that the motif begins at position j in sequence 
i. pO is not estimated and is assumed to be uniform, 

_P°(Yij = 1) = 1 / (L  - W + 1), k = 1 , . . . ,  ( L -  W + 1) 

so the above simplifies to 

z(q) = P(S~IY~j = 1 ,p  (q)) 
{J r "L -w+~ p(&lY~a = 1 , p ( q ) )  

z-.Jk= 1 

The probability is only estimated for sites which are completely within a sequence, so j 
is assumed to be within the range 1 , . . . ,  L - W + 1 in all calculations of z(q). 

Notice that the above formula for z(q) ensures that it sums to 1.0 for each sequence. 
This enforces the implicit assumption of  the one-per model that each sequence contains 
exactly one appearance of the shared motif. For the n-per model, our modified EM 
algorithm normalizes z (q) so that the sum over all positions in all sequences is N S I T E S .  
This can be written formally as 

P(S~IY~j  = 1, p(q)) 
z}~ ) = N S I T E S  N v , L - W + l  p ( s n l y i k  = l,p(q)) 

E n = l  Z ~ k = l  

Once z has been calculated as above for the n-per model, it undergoes two normaliza- 

enforce the constraints that each zi/q)- is less than or equal to 1.0, and that the tions t o  s u m  

of the -(q) in any window of length W is less than or equal to 1.0. These constraints zij 
can be written formally as 

z(q) < 1 . 0 ,  f o r l  < i < N a n d  I < j < L  i j  - -  - -  - -  

k+W-I 

E -(q) < 1 . 0 ,  for 1 < i < N a n d l < k < L -  W + I .  zij -- 

j=k 

There are many'different ways in which the constraints could be enforced. A particular 
manner was chosen which reduces computational effort. No claim is made that this is 
the only or best choice. The two constraints are enforced separately by applying the 



UNSUPERVISED LEARNING OF iVIULTIPLE MOTIFS IN BIOPOLYMERS USING EM 77 

following two algorithms in order. Figure A.1 presents the first algorithm, which makes 
one or more passes through the offset probabilities normalizing them to sum to N S I T E S  
and "squashing" (setting to 1.0) any that would exceed 1.0 after normalization. After each 
pass, if any offset probabilities get squashed, another pass is made to raise the value of 
offset probabilities that have never been squashed so that the N S I T E S  total is enforced. 
In practice, usually few passes are needed. The second algorithm, given in Figure A.2, is 
run next to enforce the constraint that no window of W positions has offset probabilities 
that sum to more than 1.0. This is achieved by dividing each sequence into adjacent 
windows of length W and normalizing within each window separately. Windows are 
then shifted one to the fight and the process is repeated. This is done for all W possible 
shifts of the windows, which guarantees that no window of width W will have offset 
probabilities summing to greater than 1.0, but may reduce the total sum below NSITES .  
The squashing algorithm could be repeated to correct this but this is not done in the 
interest of saving computation time. 

Notes 

1. The name MEME has several explanations. First, it is an acronym for multiple EM for motif elicitation. 
Second, as an English word "meme'" means a theme or motif whose prop~ation tl~ough cultural evolution 
is similar to the propagation of a gene in biological evolution. Third, MEME is a greedy algorithm--a 
"me! me!" algorithm. 

2. A related measure used occasionally in this paper, fm, odel is the information content of the model 
(Stormo, 1988). It is the sum of the information content of each position in the motif, lj,  over all the 
positions in the motif. The information content of a position in the motif is defined as 

b = ~ P l J  l°g(PzJ),  
#l 

lEE 

where/~t is the overall frequency of letter l in the dataset. The information content of the model is thus 
defined as 

W 

[mode I = ~ [j. 
j = l  

The relationship between Imodel and log(likelihood) is discussed by Stormo (1990) and Bailey (1993). 
3. Promoter sequences are DNA sequences that precede genes and are necessary for the transcription of DNA 

to messenger RNA. 
4. The consensus sequence of a motif is the sequence consisting of the most commonly occurring letter in 

each position of the appearances of the motif. Ties are resolved arbitrarily. 

5. See Stormo (1988) for a discussion of matrix-based scoring of sequences. 

6. Using all possible subsequences of the first dataset sequence is suggested in Stormo and Hartzell (1989). 
The MEME approach of using all subsequences of all sequences is preferable since it makes the order in 
which sequences are given unimportant. Not using just the first sample also eliminates the problem of the 
first sample happening to contain no motif occurrence. 

7. The idea of a "conserved motif" comes from the biological idea that the occurrences of motifs are often 
related to each other by evolution. A well conserved motif is one whose appearances are all almost identical 
to each other because little mutation has occurred in them since they separated from each other or from a 
common ancestor. 
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2. 

3. 
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5. 
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8. 
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13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

S Q U A S H  ( z (unnormalized; z~] ) = P(Si lY~j  = 1, p(q))) ,  

total (the total of  z(q) for all sequences and positions), 

N S I T E S  (the number of  appearances of  the motif  expected), 

L (length of the sequences), 

N (number of  sequences)) { 

r e n o r m a l i z e  = t rue  

while ( renormal i ze )  { 

r e n o r m a l i z e  = f a l s e  

n o r m a l i z e  = to ta l /  N S I T E S  

total = 0 

for  i =  l to N { 

f o r j = l  t o L -  W + I  { 

p ~ Z i j  

i f (p  < 1) { 

p = p / n o r m a l i z e  

i /(p > 1) { 
p = l  

N S I T E S  = N S I T E S -  1 

r e n o r m a l i z e  = t rue  

} 

Zi j z p 

i f  (p < 1) total = total + p 

} 
} 
return 

Figure A.1. SQUASH: Normalize the zij to sum to NSITES while constraining each to be between 0 and 1. 
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9. 
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11. 
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13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

SMOOTH (z(q) (normalized offset probabilities), 

L (length of the sequences), 

N (number of sequences) ) { 

for i =  l to N ( 
for o f f s e t  = 1 to W { 

f o r j = o f f s e t t o L - 2 ,  W b y  W { 
loealp = 0 

f o r k = l t o  W { 

Zo~lp = toeaZp + z~+~ 
} 
if (localp > 1) { 

f o r k = l t o  W { 

i,j+k 
} 

) 

} 
} 
return 

Figure A.2. S M O O T H :  Constra in  the sum of  offset  probabili t ies in any  w i n d o w  of  width  W to sum to no more  
than 1.0. 
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8. Biologists often number the "bases" (i.e., letters) in a DNA sequence with base 1 being the base where 
transcription from DNA to messenger RNA begins. Bases preceding the start of transcription are given 
negative numbers, starting at -1, with 0 not used.) 

9. If the best value of W is not known in advance, M E M E  can be run repeatedly with different values. 
Lawrence and Reilly (1990) addresses the question of choosing the best value of W. Each run of M E M E  
uses a single value of W for all motifs found. 
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